Polychlorinated dibenzo-\(p\)-dioxins (CDDs) and dibenzofurans (CDFs) in largemouth bass taken from Eighteenmile Creek, Niagara County, NY on July 7-8, 1992.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concentration (pg/g wet weight in standard fillet)</th>
<th>Below Burt Dam</th>
<th>Above Burt Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag number</td>
<td>9T3039 9T3042</td>
<td>9T3069 9T3070</td>
<td></td>
</tr>
<tr>
<td>DOH lab ID number</td>
<td>940542 940543</td>
<td>940544 940545</td>
<td></td>
</tr>
<tr>
<td>Length (mm)</td>
<td>359 353</td>
<td>372 357</td>
<td></td>
</tr>
<tr>
<td>Weight (g)</td>
<td>680 737</td>
<td>680 680</td>
<td></td>
</tr>
<tr>
<td>2,3,7,8-TCDD</td>
<td>6.3 3.2</td>
<td>1.2 1.2</td>
<td></td>
</tr>
<tr>
<td>1,2,3,7,8-PeCDD</td>
<td>1.7 0.92</td>
<td><0.26 1.3</td>
<td></td>
</tr>
<tr>
<td>1,2,3,4,7,8-HxCDD</td>
<td><0.51 <0.23</td>
<td><0.37 <0.26</td>
<td></td>
</tr>
<tr>
<td>1,2,3,6,7,8-HxCDD</td>
<td>0.89 0.66</td>
<td>1.5 1.3</td>
<td></td>
</tr>
<tr>
<td>1,2,3,7,8,9-HxCDD</td>
<td><0.44 <0.2</td>
<td><0.32 <0.22</td>
<td></td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HpCDD</td>
<td>1.1 1.3</td>
<td><0.57 <0.41</td>
<td></td>
</tr>
<tr>
<td>OCDD</td>
<td><1.7 2.6</td>
<td><1.3 2.2</td>
<td></td>
</tr>
<tr>
<td>2,3,7,8-TCDF</td>
<td>6.4 4.2</td>
<td>3.2 3.0</td>
<td></td>
</tr>
<tr>
<td>1,2,3,7,8-PeCDF</td>
<td>0.55 0.41</td>
<td>0.36 0.32</td>
<td></td>
</tr>
<tr>
<td>2,3,4,7,8-PeCDF</td>
<td>3.5 1.9</td>
<td>1.3 0.86</td>
<td></td>
</tr>
<tr>
<td>1,2,3,4,7,8-HxCDF</td>
<td>0.62 0.71</td>
<td>1.0 0.86</td>
<td></td>
</tr>
<tr>
<td>1,2,3,6,7,8-HxCDF</td>
<td><0.29 0.36</td>
<td>0.52 0.42</td>
<td></td>
</tr>
<tr>
<td>2,3,4,6,7,8-HxCDF</td>
<td>0.81 0.54</td>
<td>0.52 0.53</td>
<td></td>
</tr>
<tr>
<td>1,2,3,7,8,9-HxCDF</td>
<td><0.32 <0.14</td>
<td><0.24 <0.15</td>
<td></td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HpCDF</td>
<td>0.88 0.75</td>
<td>0.76 0.75</td>
<td></td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-HpCDF</td>
<td><0.56 <0.25</td>
<td><0.39 <0.25</td>
<td></td>
</tr>
<tr>
<td>OCDF</td>
<td>2.8 1.7</td>
<td><0.87 1.9</td>
<td></td>
</tr>
<tr>
<td>2,3,7,8-TCDD TEQs (DL = 0)(^1)</td>
<td>10.58 5.76</td>
<td>2.55 3.57</td>
<td></td>
</tr>
<tr>
<td>2,3,7,8-TCDD TEQs (½ DL)(^1)</td>
<td>10.66</td>
<td>5.79</td>
<td>2.73</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>(\Sigma) TCDDs</td>
<td>6.3</td>
<td>3.2</td>
<td>1.2</td>
</tr>
<tr>
<td>(\Sigma) PeCDDs</td>
<td>1.7</td>
<td>0.92</td>
<td><0.26</td>
</tr>
<tr>
<td>(\Sigma) HxCDDs</td>
<td>0.89</td>
<td>0.66</td>
<td>1.5</td>
</tr>
<tr>
<td>(\Sigma) HpCDDs</td>
<td>1.1</td>
<td>1.3</td>
<td><0.57</td>
</tr>
<tr>
<td>(\Sigma) TCDFs</td>
<td>16</td>
<td>71</td>
<td>15</td>
</tr>
<tr>
<td>(\Sigma) PeCDFs</td>
<td>6.6</td>
<td>11</td>
<td>2.7</td>
</tr>
<tr>
<td>(\Sigma) HxCDFs</td>
<td>3.0</td>
<td>4.5</td>
<td>3.8</td>
</tr>
<tr>
<td>(\Sigma) HpCDFs</td>
<td>2.2</td>
<td>1.4</td>
<td>1.9</td>
</tr>
</tbody>
</table>

\(^1\) Computed 2,3,7,8-TCDD toxic equivalents (TEQs) used the World Health Organization’s toxicity equivalency factors for mammals and humans (Van den Berg et al., 1998). DL = detection limit; these limits are indicated by less than (<) signs within the table.
<table>
<thead>
<tr>
<th>LAB ID NUMBER</th>
<th>TAG NUMBER</th>
<th>SPECIES</th>
<th>COLLECT. DATE</th>
<th>LOCATION</th>
<th>AGE</th>
<th>SEX</th>
<th>WEIGHT (W)</th>
<th>WEIGHT (G)</th>
<th>Hg (PPM)</th>
<th>RUN</th>
<th>SAMPLE REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1554-92-H</td>
<td>COMP A</td>
<td>BLC</td>
<td>920700</td>
<td>18 MILE CR ></td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>0.091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1555-92-H</td>
<td>COMP B</td>
<td>BLC</td>
<td>920700</td>
<td>18 MILE CR ></td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>0.061</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td></td>
<td></td>
<td></td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>0.061</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td></td>
<td></td>
<td></td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>0.091</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVERAGE</td>
<td></td>
<td></td>
<td></td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>0.076</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUMBER</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>---------------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>-----</td>
<td>----------------</td>
</tr>
<tr>
<td>1556-92-H</td>
<td>9T3019</td>
<td>WS</td>
<td>920707</td>
<td>18 MILE CR ></td>
<td>460</td>
<td>1020</td>
<td>1020</td>
<td>1020</td>
<td>0.114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1557-92-H</td>
<td>COMP A</td>
<td>WS</td>
<td>920707</td>
<td>18 MILE CR ></td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>0.112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1558-92-H</td>
<td>COMP B</td>
<td>WS</td>
<td>920707</td>
<td>18 MILE CR ></td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>0.121</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td></td>
<td></td>
<td></td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>0.112</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td></td>
<td></td>
<td></td>
<td>460</td>
<td>1020</td>
<td>1020</td>
<td>1020</td>
<td>0.121</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVERAGE</td>
<td></td>
<td></td>
<td></td>
<td>-513</td>
<td>-326</td>
<td>-326</td>
<td>-326</td>
<td>0.116</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUMBER</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>---------------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>-----</td>
<td>----------------</td>
</tr>
<tr>
<td>1559-92-H</td>
<td>9T3069</td>
<td>LMB</td>
<td>920708</td>
<td>18 MILE CR ></td>
<td>372</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>0.201</td>
<td>1</td>
<td>DUPLICATE</td>
</tr>
<tr>
<td>1559-92-H</td>
<td>9T3069</td>
<td>LMB</td>
<td>920708</td>
<td>18 MILE CR ></td>
<td>372</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>0.212</td>
<td>2</td>
<td>DUPLICATE</td>
</tr>
<tr>
<td>1560-92-H</td>
<td>9T3070</td>
<td>LMB</td>
<td>920708</td>
<td>18 MILE CR ></td>
<td>357</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>0.260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1561-92-H</td>
<td>9T3071</td>
<td>LMB</td>
<td>920708</td>
<td>18 MILE CR ></td>
<td>345</td>
<td>624</td>
<td>624</td>
<td>624</td>
<td>0.147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1562-92-H</td>
<td>9T3072</td>
<td>LMB</td>
<td>920708</td>
<td>18 MILE CR ></td>
<td>353</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>0.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1563-92-H</td>
<td>9T3073</td>
<td>LMB</td>
<td>920708</td>
<td>18 MILE CR ></td>
<td>340</td>
<td>595</td>
<td>595</td>
<td>595</td>
<td>0.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1564-92-H</td>
<td>9T3074</td>
<td>LMB</td>
<td>920708</td>
<td>18 MILE CR ></td>
<td>335</td>
<td>539</td>
<td>539</td>
<td>539</td>
<td>0.121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1565-92-H</td>
<td>COMP A</td>
<td>LMB</td>
<td>920708</td>
<td>18 MILE CR ></td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>0.107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1566-92-H</td>
<td>COMP B</td>
<td>LMB</td>
<td>920708</td>
<td>18 MILE CR ></td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>0.040</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td></td>
<td></td>
<td></td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>-999</td>
<td>0.040</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td></td>
<td></td>
<td></td>
<td>372</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>0.260</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVERAGE</td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>276</td>
<td>276</td>
<td>276</td>
<td>0.150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUMBER</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. STANDARD FILLETS WERE ANALYZED.
2. ANALYZED BY METHOD HG1.102.
3. LAB NUMBERS ENDING IN -H2 ARE DUPLICATE ANALYSES.
4. NEGATIVE NUMBERS INDICATE NEGATIVE RESULTS.
5. STORED IN FILE C:TSK292HG.DBF
6. ANALYTICAL RESULT = -9.999 INDICATES SAMPLE WAS NOT ANALYZED.
HALE CREEK FIELD STATION
MERCURY ANALYSIS REPORT

<table>
<thead>
<tr>
<th>LAB ID NUMBER</th>
<th>TAG NUMBER</th>
<th>SPECIES</th>
<th>COLLECT. DATE</th>
<th>LOCATION</th>
<th>AGE SEX</th>
<th>LENGTH (MM)</th>
<th>WEIGHT (GRAMS)</th>
<th>Hg (PPM)</th>
<th>RUN</th>
<th>SAMPLE REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION = 18 MILE CR ></td>
<td></td>
</tr>
<tr>
<td>SPECIES = NOP</td>
<td></td>
</tr>
<tr>
<td>1567-92-H</td>
<td>9T3030</td>
<td>NOP</td>
<td>920707</td>
<td>18 MILE CR ></td>
<td>786</td>
<td>2950</td>
<td>0.344</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1568-92-H</td>
<td>9T3031</td>
<td>NOP</td>
<td>920707</td>
<td>18 MILE CR ></td>
<td>720</td>
<td>2270</td>
<td>0.138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1569-92-H</td>
<td>9T3066</td>
<td>NOP</td>
<td>920708</td>
<td>18 MILE CR ></td>
<td>593</td>
<td>1390</td>
<td>0.088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
<td>-----</td>
<td>----------------</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>593</td>
<td>1390</td>
<td>0.088</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>786</td>
<td>2950</td>
<td>0.344</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVERAGE</td>
<td>700</td>
<td>2203</td>
<td>0.190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMBER</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| LOCATION = 18 MILE CR > |
| SPECIES = RB |
| 1570-92-H | 9T3067 | RB | 920708 | 18 MILE CR > | 143 | 57 | 0.062 |
| 1571-92-H | COMP A | RB | 920700 | 18 MILE CR > | -999 | -999 | 0.153 |
| -----------|--------|------|----------|----------|---------|-------------|---------------|----------|-----|----------------|
| MINIMUM | -999 | -999 | 0.062 |
| MAXIMUM | 143 | 57 | 0.153 |
| AVERAGE | -428 | -471 | 0.108 |
| NUMBER | 2 |

| LOCATION = 18 MILE CR > |
| SPECIES = CBC |
| 1572-92-H | COMP A | CHC | 920700 | 18 MILE CR > | -999 | -999 | 0.155 |
| -----------|--------|------|----------|----------|---------|-------------|---------------|----------|-----|----------------|
| MINIMUM | -999 | -999 | 0.155 |
| MAXIMUM | -999 | -999 | 0.155 |
| AVERAGE | -999 | -999 | 0.155 |
| NUMBER | 1 |

NOTES:
1. STANDARD FILLETS WERE ANALYZED.
2. ANALYZED BY METHOD Hg1.102.
3. LAB NUMBERS ENDING IN "H2 ARE DUPLICATE ANALYSES.
4. NEGATIVE NUMBERS INDICATE NEGATIVE RESULTS.
5. STORED IN FILE C:TSK925HG.DBF
6. ANALYTICAL RESULT = -9.999 INDICATES SAMPLE WAS NOT ANALYZED.
<table>
<thead>
<tr>
<th>LAB ID NUMBER</th>
<th>TAG NUMBER</th>
<th>SPECIES</th>
<th>COLLECT. DATE</th>
<th>LOCATION</th>
<th>AGE SEX</th>
<th>LENGTH</th>
<th>WEIGHT</th>
<th>Hg RUN</th>
<th>SAMPLE REMARKS</th>
</tr>
</thead>
</table>

LOCATION = 18 MILE CR >

SPECIES = WYE

| 1573-92-H | 9T3101 | WYE | 920708 | 18 MILE CR > | 493 | 1105 | 0.215 | | |

MINIMUM

| 493 | 1105 | 0.215 | | |

MAXIMUM

| 493 | 1105 | 0.215 | | |

AVERAGE

| 493 | 1105 | 0.215 | | |

NUMBER 1

LOCATION = 18 MILE CR <

SPECIES = SMB

| 1574-92-H | COMP A | SMB | 920706 | 18 MILE CR < | -999 | -999 | 0.245 | | |
| 1575-92-H | COMP B | SMB | 920706 | 18 MILE CR < | -999 | -999 | 0.246 | | |

MINIMUM

| -999 | -999 | 0.245 | | |

MAXIMUM

| -999 | -999 | 0.246 | | |

AVERAGE

| -999 | -999 | 0.246 | | |

NUMBER 2

LOCATION = 18 MILE CR <

SPECIES = LMB

1576-92-H	9T3007	LMB	920706	18 MILE CR <	337	624	0.259		
1577-92-H	9T3037	LMB	920707	18 MILE CR <	339	595	0.332	1	DUPLICATE
1577-92-H	9T3037	LMB	920707	18 MILE CR <	339	595	0.344	2	DUPLICATE
1578-92-H	9T3038	LMB	920707	18 MILE CR <	341	709	0.384		
1579-92-H	9T3039	LMB	920707	18 MILE CR <	359	680	0.511		
1580-92-H	9T3042	LMB	920707	18 MILE CR <	353	737	0.368		
1581-92-H	9T3045	LMB	920707	18 MILE CR <	336	709	0.517		
1582-92-H	COMP A	LMB	920707	18 MILE CR <	-999	-999	0.228		
1583-92-H	COMP B	LMB	920707	18 MILE CR <	-999	-999	0.180		

MINIMUM

| -999 | -999 | 0.180 | | |

MAXIMUM

| 359 | 737 | 0.517 | | |

AVERAGE

| 45 | 295 | 0.347 | | |

NUMBER 9

NOTES:

1. **STANDARD FILLETS WERE ANALYZED.**
2. **ANALYZED BY METHOD Hg1.102.**
3. **LAB NUMBERS ENDING IN -H2 ARE DUPLICATE ANALYSES.**
4. **NEGATIVE NUMBERS INDICATE NEGATIVE RESULTS.**
5. **STORED IN FILE C:TSM235HG.DBF**
6. **ANALYTICAL RESULT = -9.999 INDICATES SAMPLE WAS NOT ANALYZED.**
<table>
<thead>
<tr>
<th>LAB ID NUMBER</th>
<th>TAG NUMBER</th>
<th>SPECIES</th>
<th>COLLECT. DATE</th>
<th>LOCATION</th>
<th>AGE SEX</th>
<th>LENGTH MM</th>
<th>WEIGHT GRAMS</th>
<th>Hg RUN</th>
<th>SAMPLE REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1584-92-H</td>
<td>COMP A BB</td>
<td>920707</td>
<td>18 MILE CR</td>
<td>9-999</td>
<td>9-999</td>
<td>0.311</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1585-92-H</td>
<td>COMP B BB</td>
<td>920707</td>
<td>18 MILE CR</td>
<td>9-999</td>
<td>9-999</td>
<td>0.272</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1586-92-H</td>
<td>COMP C BB</td>
<td>920707</td>
<td>18 MILE CR</td>
<td>9-999</td>
<td>9-999</td>
<td>0.254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

MINIMUM
-999 -999 0.254

MAXIMUM
-999 -999 0.311

AVERAGE
-999 -999 0.279

NUMBER 3

LOCATION = 18 MILE CR <

<table>
<thead>
<tr>
<th>LAB ID NUMBER</th>
<th>TAG NUMBER</th>
<th>SPECIES</th>
<th>COLLECT. DATE</th>
<th>LOCATION</th>
<th>AGE SEX</th>
<th>LENGTH MM</th>
<th>WEIGHT GRAMS</th>
<th>Hg RUN</th>
<th>SAMPLE REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1587-92-H</td>
<td>9T3017 CARF</td>
<td>920706</td>
<td>18 MILE CR</td>
<td>700</td>
<td>4935</td>
<td>0.195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1588-92-H</td>
<td>COMP A CARF</td>
<td>920706</td>
<td>18 MILE CR</td>
<td>9-999</td>
<td>9-999</td>
<td>0.188</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1589-92-H</td>
<td>COMP B CARF</td>
<td>920706</td>
<td>18 MILE CR</td>
<td>9-999</td>
<td>9-999</td>
<td>0.242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

MINIMUM
-999 -999 0.188

MAXIMUM
700 4935 0.242

AVERAGE
-433 979 0.208

NUMBER 3

NOTES:
1. STANDARD FILLETS WERE ANALYZED.
2. ANALYZED BY METHOD Hg1.102.
3. LAB NUMBERS ENDING IN -Hz ARE DUPLICATE ANALYSES.
4. NEGATIVE NUMBERS INDICATE NEGATIVE RESULTS.
5. STORED IN FILE C:TSW929H.GBF
6. ANALYTICAL RESULT = -9.999 INDICATES SAMPLE WAS NOT ANALYZED.
1992 Region 9 - Compositing Information

RIBS - Buffalo River near Ohio Street in City of Buffalo

<table>
<thead>
<tr>
<th>Species</th>
<th>Tag Numbers</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown bullhead</td>
<td>9T3109, 10, 11, 13, 15</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>9T3108, 12, 14</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>9T3116-27</td>
<td>C</td>
</tr>
<tr>
<td>Pumpkinseed</td>
<td>9T3091, 92, 93, 95, 97, 99</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>9T3086, 89, 90, 94, 96, 98, 100, 102</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>9T3087, 103-107</td>
<td>C</td>
</tr>
</tbody>
</table>

TSMP - Eighteenmile Creek

- above Burt Dam

<table>
<thead>
<tr>
<th>Species</th>
<th>Tag Numbers</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black crappie</td>
<td>9T3058, 60, 80</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>9T3059, 61-63, 81-85</td>
<td>B</td>
</tr>
<tr>
<td>White sucker</td>
<td>9T3019</td>
<td>Ind.</td>
</tr>
<tr>
<td></td>
<td>9T3023, 28</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>9T3020-22, 24, 26, 27, 29</td>
<td>B</td>
</tr>
<tr>
<td>Largemouth bass</td>
<td>9T3069 - subsample for PCDD/PCDF</td>
<td>Ind.</td>
</tr>
<tr>
<td></td>
<td>9T3070 - subsample for PCDD/PCDF</td>
<td>Ind.</td>
</tr>
<tr>
<td></td>
<td>9T3071</td>
<td>Ind.</td>
</tr>
<tr>
<td></td>
<td>9T3072</td>
<td>Ind.</td>
</tr>
<tr>
<td></td>
<td>9T3073</td>
<td>Ind.</td>
</tr>
<tr>
<td></td>
<td>9T3074</td>
<td>Ind.</td>
</tr>
<tr>
<td></td>
<td>9T3075, 77, 78</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>9T3064, 65</td>
<td>B</td>
</tr>
<tr>
<td>Northern pike</td>
<td>9T3030</td>
<td>Ind.</td>
</tr>
<tr>
<td></td>
<td>9T3031</td>
<td>Ind.</td>
</tr>
<tr>
<td></td>
<td>9T3066</td>
<td>Ind.</td>
</tr>
<tr>
<td>Rock bass</td>
<td>9T3067</td>
<td>Ind.</td>
</tr>
<tr>
<td></td>
<td>9T3025, 79</td>
<td>A</td>
</tr>
<tr>
<td>Channel catfish</td>
<td>9T3033, 68</td>
<td>A</td>
</tr>
<tr>
<td>Walleye</td>
<td>9T3101</td>
<td>Ind.</td>
</tr>
</tbody>
</table>

- below Burt Dam

<table>
<thead>
<tr>
<th>Species</th>
<th>Tag Numbers</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smallmouth bass</td>
<td>9T3002, 5, 6, 35</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>9T3001, 3, 4, 36</td>
<td>B</td>
</tr>
<tr>
<td>Species</td>
<td>Sample Numbers</td>
<td>Ind.</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>Largemouth bass</td>
<td>9T3007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9T3037</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9T3038</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9T3039 - subsample for PCDD/PCDF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9T3042 - subsample for PCDD/PCDF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9T3045</td>
<td>Ind.</td>
</tr>
<tr>
<td></td>
<td>9T3040, 43, 44</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>9T3008, 9, 41</td>
<td>B</td>
</tr>
<tr>
<td>Brown bullhead</td>
<td>9T3011, 15, 50</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>9T3012-14, 46, 48, 49</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>9T3010, 47</td>
<td>C</td>
</tr>
<tr>
<td>Carp</td>
<td>9T3017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9T3016, 51-56</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>9T3018, 57</td>
<td>B</td>
</tr>
</tbody>
</table>
MEMORANDUM

March 18, 1994

TO: John Spagnoli
 Larry Nelson
 Steve Mooradian
 Bruce Shupp
 Bob Lange
 Gerry LeTendre
 Gary Neuderfer
 Gerry Mikol
 Peter Mack
 Frank Estabrooks
 Fred Luckey

FROM: Lawrence C. Skinner

RE: Eighteenmile Creek

Eighteenmile Creek in Niagara County is an Area of Concern designated by the International Joint Commission. Sampling of fish for chemical residue analyses was requested for above and below the Burt Dam in 1992 due to the lack of a substantial body of recent data and because of a need for such data in support of the Remedial Action Plan process.

The attached summary table provides data for PCB and organochlorine pesticides. Mercury is yet to be analyzed but must be delayed due to on-going work on an USEPA grant project. Largemouth bass will be subsampled and sent to the NYS Department of Health Laboratory for analysis of dioxins and furans.

The data shows the following points:

Above Burt Dam:

1. Substantial concentrations of PCB are found in virtually all seven fish species sampled. PCB exceeds the US Food and Drug Administration (FDA) tolerance of 2.0 ppm and exceeds the Great Lakes Water Quality Objective for PCB residues in fish necessary for wildlife protection (i.e. 0.1 ppm).

2. Residues of DDT and metabolites are below the US Environmental Protection Agency action limit of 5.0 ppm and the Great Lakes objective of 1.0 ppm. However, the Newell et al (1987) criteria of 0.2 ppm for protection of piscivorous wildlife is exceeded by most fish species.
3. Mirex is present in channel catfish at levels approximating the detection limit. The presence of any mirex causes a violation of Great Lakes water quality objectives. Mirex presence is likely a result of aerial transport from Lake Ontario or the Niagara Frontier. (see mirex below Burt Dam).

4. The remaining chemical compounds do not exceed any applicable action limit, standard, criteria, or objective.

Below Burt Dam

5. The influence of Lake Ontario and salmonid migrations is apparent for downstream of Burt Dam. This is most evident in the presence of mirex, photomirex and chlordane compounds that are present in significantly greater concentrations in fish below Burt Dam compared to fish above Burt Dam.

6. As with fish upstream, PCB concentrations substantially exceed the two guidelines of concern. In the only species for which comparisons can be made, largemouth bass in the lower reach contain significantly greater PCB concentrations than fish in the upper reach on a wet weight basis. However, this finding is an artifact of differing lipid concentrations thus suggesting that the principal PCB source is upstream of Burt Dam.

7. DDT residues downstream of the Burt dam are consistent with those upstream.

8. Reported concentrations of mirex residues (mirex plus photomirex) exceed the EPA action limit of 0.1 ppm total mirex in four samples. These samples are:

- Brown bullhead 0.138 ppm (1 composite of 3 fish)
- Largemouth bass 0.114 and 0.174 ppm (2 individual fish)
- Smallmouth bass 0.131 (1 composite of 4 fish)

As noted previously, the presence of any mirex in fish causes a violation of the Great Lakes water quality objective.

9. The remaining chemical compounds do not exceed any applicable action limit, standard, criteria, or objective. However, the continued presence of chlordane compounds in quantities greater than detection limits will be troublesome to some people.

These data are being provided to the NYS Department of Health for evaluation for human health advisory purposes. Since
PCB exceeds the FDA tolerance in most fish species at both locations sampled, it is likely that health advisories will be forthcoming.

Signature
Section Head
Environmental Monitoring Section

Attachment
LCS: cb
cc: J. Colquhoun
R. Sloan
S. Jackling
T. Forti
LS8.MEM/CB26
<table>
<thead>
<tr>
<th>Location</th>
<th>Species</th>
<th>No. of No. of</th>
<th>Length (mm)</th>
<th>Mean Length</th>
<th>Min-Max</th>
<th>Min-Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geyser Creek</td>
<td>Rainbow trout</td>
<td>2</td>
<td>100</td>
<td>45-85</td>
<td>35-90</td>
<td></td>
</tr>
<tr>
<td>Upper Geyser Creek</td>
<td>Brown trout</td>
<td>1</td>
<td>100</td>
<td>40-60</td>
<td>30-70</td>
<td></td>
</tr>
<tr>
<td>Lower Geyser Creek</td>
<td>Whitefish</td>
<td>1</td>
<td>100</td>
<td>40-60</td>
<td>30-70</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Concentrations of Chemicals in Fish from Geyser Creek, Yuba County, July 1993 Collection.
<table>
<thead>
<tr>
<th>Species</th>
<th>Mi-Max</th>
<th>Mean / Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel catfish</td>
<td>2.74</td>
<td>1.24</td>
<td>3.37</td>
<td>2.74</td>
<td>4.41</td>
<td>3.37</td>
<td>5.41</td>
<td>2.74</td>
<td>6.75</td>
<td>3.37</td>
</tr>
<tr>
<td>2.59</td>
<td>1.24</td>
<td>3.07</td>
<td>2.59</td>
<td>3.37</td>
<td>2.59</td>
<td>4.11</td>
<td>2.59</td>
<td>5.75</td>
<td>3.07</td>
<td></td>
</tr>
<tr>
<td>1.87</td>
<td>0.17</td>
<td>2.01</td>
<td>1.87</td>
<td>2.24</td>
<td>1.87</td>
<td>2.37</td>
<td>1.87</td>
<td>2.51</td>
<td>2.01</td>
<td></td>
</tr>
<tr>
<td>Catfish</td>
<td>2.84</td>
<td>1.17</td>
<td>3.14</td>
<td>2.84</td>
<td>3.37</td>
<td>3.14</td>
<td>4.41</td>
<td>2.84</td>
<td>5.75</td>
<td>3.37</td>
</tr>
<tr>
<td>3.07</td>
<td>1.17</td>
<td>3.37</td>
<td>3.07</td>
<td>3.37</td>
<td>3.07</td>
<td>4.11</td>
<td>3.07</td>
<td>5.75</td>
<td>3.37</td>
<td></td>
</tr>
<tr>
<td>2.01</td>
<td>0.17</td>
<td>2.14</td>
<td>2.01</td>
<td>2.24</td>
<td>2.01</td>
<td>2.37</td>
<td>2.01</td>
<td>2.51</td>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td>2.63</td>
<td>0.17</td>
<td>2.74</td>
<td>2.63</td>
<td>2.84</td>
<td>2.63</td>
<td>2.97</td>
<td>2.63</td>
<td>3.14</td>
<td>2.74</td>
<td></td>
</tr>
<tr>
<td>1.87</td>
<td>0.17</td>
<td>2.01</td>
<td>1.87</td>
<td>2.14</td>
<td>1.87</td>
<td>2.24</td>
<td>1.87</td>
<td>2.37</td>
<td>2.01</td>
<td></td>
</tr>
<tr>
<td>1.54</td>
<td>0.17</td>
<td>1.67</td>
<td>1.54</td>
<td>1.79</td>
<td>1.54</td>
<td>1.92</td>
<td>1.54</td>
<td>2.05</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>1.27</td>
<td>0.17</td>
<td>1.37</td>
<td>1.27</td>
<td>1.48</td>
<td>1.27</td>
<td>1.61</td>
<td>1.27</td>
<td>1.74</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>1.87</td>
<td>0.17</td>
<td>2.01</td>
<td>1.87</td>
<td>2.14</td>
<td>1.87</td>
<td>2.24</td>
<td>1.87</td>
<td>2.37</td>
<td>2.01</td>
<td></td>
</tr>
<tr>
<td>1.87</td>
<td>0.17</td>
<td>2.01</td>
<td>1.87</td>
<td>2.14</td>
<td>1.87</td>
<td>2.24</td>
<td>1.87</td>
<td>2.37</td>
<td>2.01</td>
<td></td>
</tr>
<tr>
<td>1.54</td>
<td>0.17</td>
<td>1.67</td>
<td>1.54</td>
<td>1.79</td>
<td>1.54</td>
<td>1.92</td>
<td>1.54</td>
<td>2.05</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>1.27</td>
<td>0.17</td>
<td>1.37</td>
<td>1.27</td>
<td>1.48</td>
<td>1.27</td>
<td>1.61</td>
<td>1.27</td>
<td>1.74</td>
<td>1.37</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table (cont.)
<table>
<thead>
<tr>
<th>Species</th>
<th>Trans-Chlorohydrine</th>
<th>Mean SD</th>
<th>Mean Max</th>
<th>Mean Max</th>
<th>Mean SD</th>
<th>Mean Max</th>
<th>Mean Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminole Bass</td>
<td>0.08</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>White Crappie</td>
<td>0.067</td>
<td>0.072</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Black Crappie</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Channel Catfish</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Rock Bass</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Millieye</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Beef Bream</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Largemouth Bass</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Smallmouth Bass</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Species</td>
<td>Min-Max</td>
<td>Mean-Max</td>
<td>Min-Max</td>
<td>Mean-Max</td>
<td>Min-Max</td>
<td>Mean-Max</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Smallmouth bass</td>
<td>0.069</td>
<td>0.064</td>
<td>0.027</td>
<td>0.022</td>
<td>0.006</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Largemouth bass</td>
<td>0.082</td>
<td>0.0804</td>
<td>0.0700</td>
<td>0.0672</td>
<td>0.050</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>Carp</td>
<td>0.077</td>
<td>0.077</td>
<td>0.060</td>
<td>0.058</td>
<td>0.044</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>Brook trout</td>
<td>0.085</td>
<td>0.085</td>
<td>0.066</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>White sucker</td>
<td>0.075</td>
<td>0.073</td>
<td>0.052</td>
<td>0.050</td>
<td>0.041</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>Rock bass</td>
<td>0.085</td>
<td>0.085</td>
<td>0.066</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>Northern Pike</td>
<td>0.060</td>
<td>0.060</td>
<td>0.049</td>
<td>0.049</td>
<td>0.036</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>Largemouth Bass</td>
<td>0.061</td>
<td>0.061</td>
<td>0.049</td>
<td>0.049</td>
<td>0.036</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>Black Crappie</td>
<td>0.083</td>
<td>0.083</td>
<td>0.052</td>
<td>0.052</td>
<td>0.034</td>
<td>0.034</td>
<td></td>
</tr>
</tbody>
</table>

Table (cont.)

Notes: (1) Weight, wt. weight, in standard units; (2) PCBs, polychlorinated biphenyls; (3) DDT, dichlorodiphenyltrichloroethane; (4) HCH, hexachlorocyclohexane; (5) DDE, dichlorodiphenyldichloroethylene; (6) DDD, dichlorodiphenyldichloroethylene; (7) Lindane, gamma-HCH; (8) Aldrin; (9) Dieldrin; (10) Chlordane; (11) DCPD, dieldrin, chlordane; (12) Mirex, pentachlorophenol; (13) P,p'-DDT; (14) DDTs, DDEs, and DDDs; (15) HCHs, HCHs, and DCPDs.