Final Report for Eighteenmile Creek PCB Source Trackdown Project Niagara County, New York

January 2007

Prepared for:

NIAGARA COUNTY SOIL AND WATER CONSERVATION DISTRICT 4487 Lake Avenue Lockport, NY 14094

Prepared by:

ECOLOGY AND ENVIRONMENT, INC. 368 Pleasant View Drive Lancaster, New York 14086

©2007 Ecology and Environment, Inc.

Section

Page

1	Introduction1-1
	1.1 Project Team
	1.2 Project Background
	1.3 Site Description
	1.4 Project Tasks
	1.4.1 Source Trackdown Sampling in Eighteenmile Creek
	1.4.2 Review of Historical Data
2	Sampling and Analysis Results2-1
	2.1 Field Sampling
	2.2 Sampling Locations
	2.3 Analytical Results
	2.3.1 Quality Assurance/Quality Control
	2.3.2 Comparison of Screening and Core Sample Results
	2.4 Nature and Extent of Contamination
	2.4.1 PCB Contamination
	2.4.2 Metals Contamination
3	Historical Data Review3-1
4	Conclusions and Recommendations4-1
-	4.1 Sediment Sampling
	4.2 GIS Data
	4.3 Recommendations
Appendi	x
Α	Laboratory Data and Data Review Memos A-1
В	PCB Trackdown Supporting Documentation

ist of Tables

Table		Page
1-1	Project Team, Eighteenmile Creek PCB Trackdown Study	1-2
1-2	Sampling and Chemical Analysis Summary Table, Eighteenmile Creek PCB Source Trackdown, Lockport, NY	1-5
2-1	Summary of Samples and Sample Delivery Groups	2-2
2-2	Summary of Core Sample Information	2-2
2-3	Summary of Core Sample Intervals	2-3
2-4	Summary of Aroclor and Total PCB Concentrations in Screening Samples	
2-5	Summary of Analytical Results in Core Samples	2-10
2-6	Metals and TOC Concentrations in Core Samples	2-14
2-7	Comparison of PCB Concentrations to Sediment Criteria	2-17
3-1	Summary of Historical Data Sources	

ist of Figures

Figure

Page

1-1	Project Location	1-4
2-1	Sampling Locations	2-5

ist of Abbreviations and Acronyms

AOC	Area of Concern
ССВ	continuous calibration blank
COC	chain-of-custody
DGPS	Differential Global Positioning Systems
E & E	Ecology and Environment, Inc.
EPA	United States Environmental Protection Agency
GIS	geographic information system
LCS	laboratory control sample
MDL	method detection limit
mg/kg	milligram per kilogram
MS/MSD	matrix spike/matrix spike duplicate
NCSWCD	Niagara County Soil and Water Conservation District
NYSBC	New York State Barge Canal
NYSDEC	New York State Department of Environmental Conservation
PCB	polychlorinated biphenyl
ppb	parts per billion
QA/QC	quality assurance/quality control
QAM	Quality Assurance Manual
QAPP	Quality Assurance Project Plan
RAP	Remedial Action Plan
RPD	relative percent difference

List of Abbreviations and Acronyms (cont.)

SDG	sample delivery group
SPDES	State Pollutant Elimination System
SRI/FS	sediment remedial investigation/feasibility study
STL	Severn Trent Laboratories
TAGM	Technical Administrative Guidance and Memorandum
TAL	Target Analyte List
TOC	total organic carbon
USACE	U.S. Army Corps of Engineers

Distribution List

Party	Affiliation and Title	Revision	Date Sent			
Eighteenmile Creek QAPP Original Distribution						
Marcia Meredith Galloway	E & E QA Director	0	January 30, 2007			
Kris Erickson	E & E Project Manager	0	January 30, 2007			
Victor DiGiacomo	NCSWCD Project Manager	0	January 30, 2007			
Marie O'Shea	EPA Project Officer	0	January 30, 2007			
Greg Sutton	NYSDEC Project Manager	0	January 30, 2007			
Tony Friona	USACE Engineer	0	January 30, 2007			

Revision List

Revision	Modifications	Distribution

1

Introduction

On behalf of the Niagara County Soil and Water Conservation District (NCSWCD), Ecology and Environment, Inc. (E & E) completed the Eighteenmile Creek Polychlorinated Biphenyl (PCB) Trackdown Study for Eighteenmile Creek, located in Niagara County, New York. The work was performed in accordance with the Quality Assurance Project Plan (QAPP) Eighteenmile Creek PCB Source Trackdown Project prepared by E & E for NCSWCD and approved by the U.S. Environmental Protection Agency (EPA) Region 2 in May 2006.

The purpose of the trackdown project was to further evaluate contamination in Eighteenmile Creek sediments. The specific objectives of the investigation were to:

- Review all available historical sampling data to identify potential PCB sources and future sampling locations of interest, using geographic information system (GIS) technology to accurately depict the data spatially;
- Further evaluate the nature and extent (horizontally and vertically) of PCBs, arsenic, copper, chromium, lead, zinc, and mercury contamination in Eight-een- mile Creek sediment that has the potential to negatively impact the downstream Area of Concern (AOC); and
- Assist and make progress towards de-listing Eighteenmile Creek as an AOC.

This report presents the results of the sampling and analytical program in Section 2 and provides a summary of the review of the historical data in Section 3. Section 4 provides an overview all the PCB results and recommendations for making additional progress toward de-listing of Eighteenmile Creek as an AOC. The remainder of this section provides background information and discusses planned work activities.

Supporting information is included as appendices to the report. The appendices include:

1. Introduction

- Appendix A, Laboratory Data and Data Review Memos. A compact disc (CD) of all laboratory reports in .pdf format including case narratives and quality control (QC) sample results. The CD also includes a copy of the data validation memos prepared for each sample delivery group (SDG) of core sampling data.
- Appendix B, PCB Trackdown Supporting Documentation. Supporting tables and field documentation that were too large to include in the report text. Tables B-1 and B-2 are included in Appendix B along with a CD of supporting files documentation that include GIS figures and links and field photographs.

1.1 Project Team

The project team for this work was described in the QAPP. Table 1-1 provides an updated list of the current team. All analytical services were provided by Severn Trent Laboratories, Inc (STL) Buffalo, New York except for analyses for total organic carbon (TOC), which were run at the STL Burlington location.

Key Team Member	Contact Infor	mation
NCSWCD Project Manager	Victor F. DiGiacomo	716-434-4949
EPA Region 2 Project Officer	Barbara Belasco	212-637-3848
E & E QA Director/Program	Marcia Meredith Galloway	716-684-8060
QA Officer		
E & E Project Manager	Kris Erickson	716-684-8060
E & E Field Team Leader	David Shultz	716-684-8060
E & E Project Chemist	Barbara Krajewski	716-684-8060
Subcontractors		
Laboratory (sediment)	Tony Bogolin	716-504-9822
	Project Manager	
	Severn Trent Laboratories, Inc.	
	10 Hazelwood Drive	
	Amherst, NY 14228	

Table 1-1 Project Team, Eighteenmile Creek PCB Trackdown Study

The U.S. Army Corps of Engineers (USACE) and New York State Department of Environmental Conservation (NYSDEC) provided historical data reports and participated in project planning to ensure project objectives were coordinated with other related aspects of work at the site.

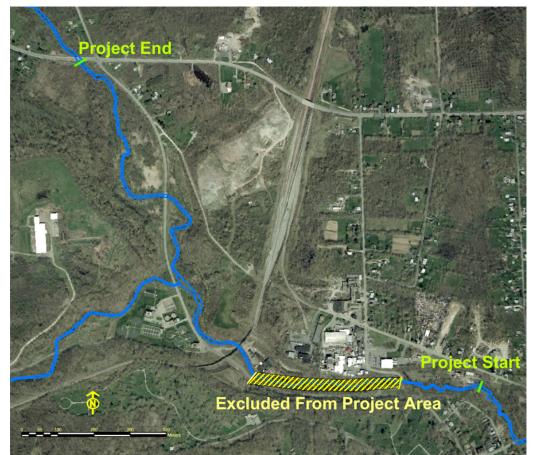
1.2 Project Background

PCBs contaminate the sediments of Eighteenmile Creek and its AOC. PCBs are factors in restrictions on fish and wildlife consumption, bird and animal deformities, or reproductive problems and degradation of benthos. A surface sediment sample taken during the 1994 Olcott harbor sediment sampling from the Eight-

1. Introduction

eenmile Creek AOC contained PCBs at a concentration greater than the NYSDEC guidance for screening of contaminated sediments. Ten of 15 fish flesh samples from the creek contained PCBs at levels above the Food and Drug Administration action level of 2.0 milligrams per kilogram (mg/kg). Additionally, studies of sediment in the creek and surrounding areas have been conducted by NYSDEC upstream of the project area (i.e., the Flintkote Site). (See Section 3 for a complete overview of the historical data.)

Sources and potential sources of PCBs to Eighteenmile Creek have been identified as industrial and municipal wastewater discharges, combined sewer overflows, inactive hazardous waste sites, the New York State Barge Canal (NYSBC) discharge, contaminated sediments already present in the creek, and an unknown source between Olcott Street and North Transit Road. Extensive progress has been made by monitoring discharges and updating State Pollutant Elimination System (SPDES) permits for industrial and municipal wastewater dischargers and de-listing inactive hazardous waste sites. NYSDEC's investigation of areas north of the Flintkote site and the Barge Canal continues to help identify the unknown source of PCBs. NYSDEC expects a full remediation plan to be in place by 2008 for this entire area; however, the need to determine the source of PCBs is critical to the overall remediation plan.


This study hopes to contribute to the progress of implementing the Remedial Action Plan (RAP) for the Eighteenmile Creek AOC by completing a preliminary step necessary to make improvements in overall water quality, habitat, and the health of fish and wildlife. The goal of the remedial action is to restore the chemical, physical, and biological integrity of the AOC ecosystem. Locating upstream sources of contamination to the AOC will aid in this mission and make progress towards the overall goal of de-listing Eighteenmile Creek as an AOC.

1.3 Site Description

Eighteenmile Creek, located in the heart of Niagara County, is surrounded by six highly residential townships. Many citizens own creek-front property from the start of its headwaters in the town of Lockport to its discharge to Lake Ontario in Olcott, New York. The creek is used extensively for fishing, boating, and recreation. The projected sampling location is primarily in a rural/residential area. Sediment contamination in the area upstream of the project study area has impacted residential properties adjacent to the creek.

Sediments are continually migrating downstream. Contaminated sediments in the upper areas of the creek will continue to move downstream and negatively impact the lower areas of creek and the AOC. It is inferred that other "pockets" of contaminated sediment exist in the creek that have the same negative potential. The PCB trackdown study focused on clarifying the location of PCB-, lead-, arsenic-, copper-, chromium-, zinc-, and mercury-contaminated sediments in Eighteenmile

1. Introduction

Creek in a historically industrial area of the City of Lockport and downstream of the former Flintkote plant site. Figure 1-1 is a map of the project location.

Figure 1-1 Project Location

1.4 Project Tasks

The project has two main tasks: trackdown of sources of contamination and review of historical data.

1.4.1 Source Trackdown Sampling in Eighteenmile Creek

Sediment core sampling in Eighteenmile Creek was conducted from Harwood Street to Stone Road (8,000 feet). Approximately 2,000 feet of creek within this area was not investigated because the gradient of the creek cascading down the Niagara Escarpment is too steep to ensure the safety of the field sampling crews. In addition, the amount of sediment in this area available for sampling is minimal because the water moves too swiftly. Sampling was conducted in a historically industrial area of the City of Lockport and downstream of the former Flintkote plant site. Based on the review of historical data, additional samples were collected from Gulf Creek, a tributary of Eighteenmile Creek, and a small, unmarked

1. Introduction

drainage area north and east of the Gulf Creek confluence with Eighteenmile Creek.

The first phases of the sampling effort included collecting surface sediment grab samples for analysis of PCBs using a modified laboratory screening procedure. A total of 80 samples were collected around source areas, areas of deposition, and at defined intervals along the route for PCB screening at a detection limit of 0.25 mg/kg. A complete description of the sampling is provided in Section 2 below.

PCB screening sample results were analyzed within 72 hours. The screening results were used to determine locations for sediment core samples. A total of 12 sediment core samples (3-foot) were collected and analyzed for low level PCBs, selected metals (i.e., arsenic, chromium, copper, lead, zinc, and mercury) and TOCs. PCB concentrations were analyzed at approximately 1-foot intervals. In the original QAPP, metals and TOCs were to be analyzed as a composite of all 3 feet. However, based on the consistency of the PCB screening results and the sediment material, it was determined that analysis of the surface interval for metals was more appropriate. TOC samples were collected from representative sediment types across all the cores. A summary of the planned and actual sample collection is provided on Table 1-2. Section 2 provides a detailed discussion of the analytical results.

Table 1-2 Sampling and Chemical Analysis Summary Table, Eighteenmile Creek
PCB Source Trackdown, Lockport, NY

		No. of Field	Field	Trip	Rinseate		Total No. of
Analysis	Method No.	Samples	Duplicates			MS/MSD	Samples
Sediment Sampling - P	Sediment Sampling - Planned						
TCL PCBs-Screening	SW 8082 Mod	80	4	—	_	4	84
TCL PCBs	SW 8082	36	0	—	_	0	36
Target Analyte List	SW 6010B/	12	0	—	_	0	12
(TAL) As, Cu, Cr, Pb,	7471A						
Zn, and Hg only (com-							
posite)							
TOCs (composite)	Lloyd-Kahn	12	0	—	_	0	12
Sediment Sampling - A	ctual						
TCL PCBs-Screening	SW 8082 Mod	80	3	—	_	4	83
TCL PCBs	SW 8082	36	0	—	_	3	36
TAL As, Cu, Cr, Pb, Zn,	SW 6010B/	12	0	—	-	1	12
and Hg only (surface	7471A						
interval of each core)							
TOC (select intervals of	Lloyd-Kahn	12	0	—	_	1	12
various cores)							

1. Introduction

1.4.2 Review of Historical Data

All sources of existing data were collected and subject to quality review as described in Section 2.9 of the QAPP. The data were entered into the GIS database and sampling locations were geo-referenced. The PCB results were corrected to be in consistent units and reporting criteria. Meta-data files were created for each data source to indicate pertinent quality information. The historical data are presented in a GIS website (see Section 3).

All sampling sites were logged using a Differential Global Positioning System (DGPS) unit and added to the GIS database. The analytical data collected during the PCB trackdown study also was entered into the database.

Potential PCB sources (historical polluters) in the area were investigated and entered into the GIS database. The GIS database contains the known PCB data and the identified potential sources. The GIS database map was used by E & E and NCSWCD to identify and map key sampling locations. The historical data were combined with the data collected on the PCB source trackdown to provide final contour maps of historical contamination and project potential sources. All data are presented on the GIS website (described in Section 3). The website will be used by NCSWCD and USACE to implement the RAP.

2

Sampling and Analysis Results

This section of the report describes the sampling and analysis results of the Eighteenmile Creek PCB Trackdown Study.

2.1 Field Sampling

The purpose of the sampling project was to further determine the location, nature, and extent of PCB contamination in Eighteenmile Creek sediments. The field program was conducted in phases. During the early phases, PCB samples were collected from surface sediments and screened for PCBs using a medium-level extraction procedure. The results were obtained in 72 hours and the concentrations evaluated in order to determine the next set of sample locations. Table 2-1 provides a summary of the samples collected and the laboratory methods and work orders. Appendix A contains all the associated laboratory data. Appendix B provides a detailed listing of the screening samples.

Sediment core sample locations were determined based upon the results of the preliminary PCB screening round. A total of 12 cores and 36 sediment core samples were collected. Due to the difficulty of extracting 3-foot cores, samples were extracted from the point of refusal. Point of refusal varied from as low as 14 inches to more than 60 inches. Extractions were divided into three intervals according to sample depth. Table 2-2 provides detailed listing of cores collected and field observations. Information about each sample interval is provided in Table 2-3.

All the surface interval core samples (i.e., noted "A") were analyzed for arsenic, chromium, copper, lead, and mercury. One sample from each core was collected and analyzed for TOCs for a total of 12 TOC samples. TOC samples were chosen by visual observation of changes in each profile that best represented overall soil representation. The samples selected for TOC analyses are noted on Table 2-3.

All samples were collected as described in the QAPP. The screening samples as well as sediment core samples were referenced using a DGPS. The DGPS data were downloaded into the GIS database along with the sample location.

	Collection			
Туре	Date	No. of Samples	Lab Work Order	Parameter
Screen	7/6/2006	18	A06-7658	PCBs Screen
Screen	7/14/2006	20	A06-8044	PCBs Screen
Screen	7/14/2006	9	A06-8045	PCBs Screen
Screen	7/27/2006	20	A06-8652	PCBs Screen
Screen	7/27/2006	9	A06-8655	PCBs Screen
Screen	7/28/2006	4	A06-8655	PCBs Screen
Screen	9/8/2006	3	A06-A306	PCBs Screen
Core	8/23/2006	5	A06-A671	Metals
Core	8/23/2006	15	A06-9725	PCBs
Core	8/23/2006	5	A06-9732	TOC
Core	8/24/2006	5	A06-A671	Metals
Core	8/24/2006	15	A06-9727	PCBs
Core	8/24/2006	5	A06-9732	TOC
Core	9/8/2006	2	A06-A671	Metals
Core	9/8/2006	6	A06-A304	PCBs
Core	9/8/2006	2	A06-A305	TOC

Table 2-1 Summary of Samples and Sample Delivery Groups

Table 2-2 Summary of Core Sample Information

Distance							
			Water	from	Sample	Water	
Sample ID	Date	Bank	Depth	Bank	Time	Flow	Weather
EMC-C-01-SD	23-Aug-06	RDB	9"	2'9"	9:26	low-mod	clear 60*-68* wind 0-1 S
EMC-C-02-SD	23-Aug-06	RDB	16"	3'	11:30	low-mod	clear 60*-68* wind 0-1 S
EMC-C-03-SD	23-Aug-06	RDB	16"	4'	13:05	low-mod	P/C 73* 3-5 S
EMC-C-04-SD	23-Aug-06	LDB	20"	19'	13:35	mod	clear 75* 5-8 SW
EMC-C-05-SD	23-Aug-06	RDB	8"	6'	14:10	mod-high	clear 75* 5-8 SW
EMC-C-06-SD	24-Aug-06	LDB	12"	2' 8"	9:32	high	M/C 68* 2-5 SW low/N
							upper
EMC-C-07-SD	24-Aug-06	RDB	7"	5' 3"	10:10	mod	M/C 68* 2-5 SW low/N
							upper
EMC-C-08-SD	24-Aug-06	RDB	0"	3'	11:35	low	M/C 68* 2-5 SW low/N
							upper
EMC-C-09-SD	24-Aug-06	LDB	3'	6'	12:00	low-mod	M/C 68* 2-5 SW low/N
	_						upper
EMC-C-10-SD	24-Aug-06	LDB	3"	2'	12:45	mod-high	M/C 68* 2-5 SW low/N
							upper

Table 2-2 Summary of Core Sample Information

			Distance			
		Water	from	Sample	Water	
Date	Bank	Depth	Bank	Time	Flow	Weather
9-Sep-06	RDB	12"	4'	9:00	low	P/C 65*-75* 8-15 SW
9-Sep-06	LDB	11"	4.5'	10:15	mod	P/C 65*-75* 8-15 SW
	9-Sep-06	9-Sep-06 RDB	DateBankDepth9-Sep-06RDB12"	WaterfromDateBankDepthBank9-Sep-06RDB12"4'	DateBankDepthBankTime9-Sep-06RDB12"4'9:00	Waterfrom BankSample TimeWater Flow9-Sep-06RDB12"4'9:00low

Key:

LDB = Left descending bank.

RDB = Right descending bank.

Depth Sediment Sample ID Interval (inches) Composition TOC **Notes** Photo SSE #27 and #26/#25 EMC-C-01-SD 0"-10.5" sand/silt, black organic А <50% of core 10"-21" 80% clay/sand dark/gray EMC-C-01-SD В Refusal at 37" EMC-C-01-SD С 21"-32" Yes clay brown EMC-C-02-SD 0"-8" organic dark black w/ Photo E #24. Α 75% sand EMC-C-02-SD В 8"-16" Yes organic w/75% sand Refusal at 25 1/2" dark/black EMC-C-02-SD С 16"-25" clay, cobble organic tan black 0"-7" EMC-C-03-SD А organic w/ dark gray clay Photo #23-22 E. dark tan clay EMC-C-03-SD В 7"-14" Yes Refusal at 25" EMC-C-03-SD С 14"-22" tan clay 0"-6" gravel/coarse sand Photo #21 NE. EMC-C-04-SD А gravel w/ dark Center channel, best soil EMC-C-04-SD В 6"-12" Yes clay(<25%)profile, other sections of muck did not hold in place 6"-14" captures. Refusal at 21" EMC-C-04-SD С 12"-18" clay EMC-C-05-SD 0"-6" silt/sand, 75% gravel Photo #19 N and #18 S. А EMC-C-05-SD В 6"-12" gravel less silt/sand Very cobbled section of stream, probed 6 locations on RDB because LDB was undercut and all gravel/cobble/stone EMC-C-05-SD С 12"-18" Yes gravel and rocks Refusal at 20" EMC-C-06-SD 0"-5" Yes organic, wood chip, Photo #18 S: #11 of core; Α gravel #10 core sections. 5"-10" EMC-C-06-SD В organic, <% gravel some Looked at 6 other locations; soils were 2"-6"; went for clay deepest and best profile EMC-C-06-SD С 10"-15" Clay, rock/cobble Refusal at 18"

Table 2-3 Summary of Core Sample Intervals

	Sediment				
Sample ID	Interval	(inches)	тос	Composition	Notes
EMC-C-07-SD	А	0"-5"		coarse sand	Photo #17 N; #16 E; #9 of core:
EMC-C-07-SD	В	5"-10"		sand, cobble	In backwater of swift water below rock wall behind sand bar
EMC-C-07-SD	C	10"-15"	Yes	sand with some clay mix	Refusal at 18"
EMC-C-08-SD	А	0"-6"		organic	Photo #15 S #14 E; #8 core section:
EMC-C-08-SD	В	6"-12"	Yes	sand/clay mix gray/black colors	Saturated soils above water level; deep muck.
EMC-C-08-SD	C	12"-18"		black sand/clay 12- 15":16-18" gray clay	Refusal at 4 1/2'
EMC-C-09-SD	А	0"-8"		coarse sand, organic mix	Photos #13 NW, #7 core section:
EMC-C-09-SD	В	8"-16"		75% organic, gravel w/ pebbles, red clay	Deep muck >3': refusal at 5': probed to >5'.
EMC-C-09-SD	C	16"-24"	Yes	25% red clay, 75% black clay w/ sand	
EMC-C-10-SD	А	0"-6"		organic w/ sand mix	Photo # 12 NNW, #6 core section:
EMC-C-10-SD	В	6"-12"		sand/clay mix	Top layer deep muck >10": lots of sheen.
EMC-C-10-SD	C	12"-18"	Yes	black clay, last 1" red clay	Refusal at 24"
EMC-C-11-SD	А	0"-9.5"		organic, silts, some coarse sand, gray	No refusal past 3.5'.
EMC-C-11-SD	В	9.5"-19"	Yes	coarse sand w/ silts clay 1/3 bottom	Photo #1 of core sections
EMC-C-11-SD	C	19"-28.5"		clay w/ concretions, or- ganics, silt (lens)	brownish gray in clay layer
EMC-C-12-SD	A	0"-9.5"	Yes	organic, silts, fine sand,	Photo #2 of core sections. Sheen upon retrieval; petro- leum odor, dark gray.
EMC-C-12-SD	В	9.5"-19"		silts, organic, fine sand, wood, gray clay silt	Clay increases in depth.
EMC-C-12-SD	C	19"-28.5"		clay- silty gray upper/red brown lower	Both clay sections dry, compacted.

Table 2-3 Summary of Core Sample Intervals

2.2 Sampling Locations

The sampling locations were chosen based on known contamination sources and potential for depositional areas in the Eighteenmile Creek sediments. Figure 2-1 shows the sample locations of both screening and core samples. The field program was conducted in phases. During the early phases, PCB samples were

© Ecology & Environment, Inc. GIS Department Project #

Figure 2-1 PCB Sampling Locations and Concentrations along Eighteenmile Creek

collected within the entire study area. In the later collection phases, locations were chosen to better define potential PCB-contaminated areas. Additional samples were collected from Gulf Creek, a tributary of Eighteenmile Creek along the left descending bank, and from an overflow, emergent wetland along the right descending bank farther downstream to identify potential contributions from the tributaries. The Gulf Creek's confluence and adjacent emergent wetlands along Eighteenmile Creek are located within the project area.

The core samples were selected to cover the entire study area. The cores were located in areas of low flow and high sediment deposition to maximize the depth of the core that could be extracted. The notes on Table 2-3 provide additional information on how core locations and sample intervals were selected.

2.3 Analytical Results

All samples were analyzed as described in the QAPP. Analytical method requirements are listed on Table 2-1. Analytical results for the screening samples are presented on Table 2-4. The screening results show the individual Aroclor mixtures detected in the samples and the total PCB concentration. PCBs were detected in 53 of the 80 samples with concentrations ranging from 59 parts per billion (ppb) to 4,300 ppb.

Analytical results for the core samples are presented on Table 2-5. The core results show the individual Aroclor mixtures detected in the samples and the total PCB concentration. Table 2-5 also shows the concentrations of metals and TOC in select samples. PCBs were detected in 31 of the 36 samples with concentrations ranging from 12 ppb to 69,000 ppb. Metals and TOCs were detected in all core samples as summarized in Table 2-6.

2.3.1 Quality Assurance/Quality Control

The quality assurance/quality control (QA/QC) procedures utilized for the project are described in the QAPP. These procedures were implemented for all activities in the project. E & E performed data review of all the core sample results. The data review memos and laboratory data reports are provided in Appendix A. The following summarizes any QA/QC concerns that may have impacted data usability.

Duplicate Samples

Consistency in both sample collection and sample analysis is checked through analysis of duplicate samples. Duplicate samples consist of aliquots of sample media placed in separate sample containers and labeled as separate samples. Duplicate samples were collected at a rate of approximately one per 20 field samples for the screening samples. Duplicate samples were collected for EMC-S20-SD, EMC-S40-SD, EMC-S60-SD, and EMC-S80-SD. The original sample EMC-S80-D was lost in packaging so only the duplicate was analyzed. The three

Table 2-4 Summary of Aroclor and Total PCB Concentrations in Screening Samples
--

			Arcolor			
Sample	Date		Aroclor 1242	Aroclor 1248	Aroclor 1254	PCBs (total)
Identification	Collected	Method	1242 (μg/Kg)	(µg/Kg)	μg/Kg)	μg/Kg)
EMC-S01-SD	6-Jul-06	8082	(µg/kg) 300 U	(µg/Kg) 170 J	300 U	(µg/Kg) 170
	6-Jul-06	8082	190 U	230	190 U	230
EMC-S02-SD			200 U	230 200 U	200 U	230 200 U
EMC-S03-SD	6-Jul-06	8082	200 U 200 U	200 U 200 U		
EMC-S04-SD	6-Jul-06	8082			200 U	200 U
EMC-S05-SD	6-Jul-06	8082	160 U	160 U	160 U	160 U
EMC-S06-SD	6-Jul-06	8082	150 U	370	140 J	510
EMC-S07-SD	6-Jul-06	8082	120 U	300	200	500
EMC-S08-SD	6-Jul-06	8082	110 U	120	110 U	120
EMC-S09-SD	6-Jul-06	8082	140 U	190	82 J	272
EMC-S10-SD	6-Jul-06	8082	130 U	580	250	830
EMC-S11-SD	6-Jul-06	8082	160 U	1000	160 U	1000
EMC-S12-SD	6-Jul-06	8082	190 U	170 J	190 U	170
EMC-S13-SD	6-Jul-06	8082	170 U	460	170 U	460
EMC-S14-SD	6-Jul-06	8082	200 U	940	200 U	940
EMC-S15-SD	6-Jul-06	8082	160 U	150 J	160 U	150
EMC-S16-SD	6-Jul-06	8082	140 U	140 U	140 U	140 U
EMC-S17-SD	6-Jul-06	8082	240 U	620	240 U	620
EMC-S18-SD	6-Jul-06	8082	260 U	130 J	260 U	130
EMC-S19-SD	14-Jul-06	8082	220 U	220 U	220 U	220 U
EMC-S20-SD	14-Jul-06	8082	160 U	160 U	160 U	160 U
EMC-S20-SD-D	14-Jul-06	8082	160 U	160 U	160 U	160 U
EMC-S21-SD	14-Jul-06	8082	130 U	1600	130 U	1600
EMC-S22-SD	14-Jul-06	8082	180 U	180 U	180 U	180 U
EMC-S23-SD	14-Jul-06	8082	230 U	230 U	230 U	230 U
EMC-S24-SD	14-Jul-06	8082	150 U	150 U	150 U	150 U
EMC-S25-SD	14-Jul-06	8082	210 U	520	220	740
EMC-S26-SD	14-Jul-06	8082	210 U	1100	210 U	1100
EMC-S27-SD	14-Jul-06	8082	170 U	680	170 U	680
EMC-S28-SD	14-Jul-06	8082	170 U	1700	170 U	1700
EMC-S29-SD	14-Jul-06	8082	250 U	250 U	250 U	250 U
EMC-S30-SD	14-Jul-06	8082	190 U	2700	190 U	2700
EMC-S31-SD	14-Jul-06	8082	190 U	2400	190 U	2400
EMC-S32-SD	14-Jul-06	8082	130 U	130 U	130 U	130 U
EMC-S33-SD	14-Jul-06	8082	140 U	1500	140 U	1500
EMC-S34-SD	14-Jul-06	8082	140 U	140 U	140 U	140 U
EMC-S35-SD	14-Jul-06	8082	210 U	1000	210 U	1000
EMC-S36-SD	14-Jul-06	8082	180 U	830	180 U	830
EMC-S37-SD	14-Jul-06	8082	210 U	1900	210 U	1900
EMC-S38-SD	14-Jul-06	8082	170 U	170 U	170 U	170 U
EMC-S39-SD	14-Jul-06	8082	260 U	580	260 U	580
EMC-S40-SD	14-Jul-06	8082	230 U	230 U	230 U	230 U
EMC-S40-SD-D	14-Jul-06	8082	200 U	200 U	200 U	200 U
EMC-S41-SD	14-Jul-06	8082	280 U	280 U	280 U	280 U
EMC-S42-SD	14-Jul-06	8082	210 U	1100	210 U	1100
EMC-S43-SD	14-Jul-06	8082	170 U	4300	170 U	4300

	-		Aroclor		•	
Sample	Date		1242	Aroclor 1248	Aroclor 1254	PCBs (total)
Identification	Collected	Method	(µg/Kg)	(µg/Kg)	(µg/Kg)	μg/Kg)
EMC-S44-SD	14-Jul-06	8082	160 U	1200	160 U	1200
EMC-S45-SD	14-Jul-06	8082	160 U	640	160 U	640
EMC-S46-SD	27-Jul-06	8082	260 U	260 U	260 U	260 U
EMC-S47-SD	27-Jul-06	8082	110 U	96 J	50 J	146
EMC-S48-SD	27-Jul-06	8082	160 U	1400	160 U	1400
EMC-S49-SD	27-Jul-06	8082	140 U	1300	140 U	1300
EMC-S50-SD	27-Jul-06	8082	140 U	1600	140 U	1600
EMC-S51-SD	27-Jul-06	8082	160 U	570	160 U	570
EMC-S52-SD	27-Jul-06	8082	230 U	230 U	230 U	230 U
EMC-S53-SD	27-Jul-06	8082	190 U	190 U	190 U	190 U
EMC-S54-SD	27-Jul-06	8082	310 U	310 U	310 U	310 U
EMC-S55-SD	27-Jul-06	8082	200 U	59 J	200 U	59
EMC-S56-SD	27-Jul-06	8082	130 U	380	120 J	500
EMC-S57-SD	27-Jul-06	8082	140 U	730	140 U	730
EMC-S58-SD	27-Jul-06	8082	150 U	650	150 U	650
EMC-S59-SD	27-Jul-06	8082	220 U	220 U	220 U	220 U
EMC-S60-SD	27-Jul-06	8082	210 U	340	210 U	340
EMC-S60-SD-D	27-Jul-06	8082	210 U	750	210 U	750
EMC-S61-SD	27-Jul-06	8082	120 U	460	460	920
EMC-S62-SD	27-Jul-06	8082	120 U	93 J	120 U	93
EMC-S63-SD	27-Jul-06	8082	210 U	950	210 U	950
EMC-S64-SD	27-Jul-06	8082	180 U	960	180 U	960
EMC-S65-SD	27-Jul-06	8082	230 U	1100	380	1480
EMC-S66-SD	27-Jul-06	8082	110 U	110 U	110 U	110 U
EMC-S67-SD	27-Jul-06	8082	1700	190 U	190 U	1700
EMC-S68-SD	27-Jul-06	8082	170 U	170 U	170 U	170 U
EMC-S69-SD	27-Jul-06	8082	160 U	130 J	38 J	168
EMC-S70-SD	27-Jul-06	8082	240 U	160 J	240 U	160
EMC-S71-SD	27-Jul-06	8082	110 U	130	110 U	130
EMC-S72-SD	27-Jul-06	8082	160 U	190	70 J	260
EMC-S73-SD	27-Jul-06	8082	140 U	140 U	140 U	140 U
EMC-S74-SD	28-Jul-06	8082	190 U	190 U	190 U	190 U
EMC-S75-SD	28-Jul-06	8082	150 U	1000	150 U	1000
EMC-S76-SD	28-Jul-06	8082	130 U	330	130 U	330
EMC-S77-SD	28-Jul-06	8082	110 U	220	54 J	274
EMC-S78-SD	8-Sep-06	8082	330 U	330 U	330 U	330 U
EMC-S79-SD	8-Sep-06	8082	420 U	420 U	420 U	420 U
EMC-S80-SD-D	8-Sep-06	8082	240 U	240 U	240 U	240 U

Table 2-4 Summary of Aroclor and Total PCB Concentrations in Screening Samples

⁽¹⁾ Bold and Shaded Maximum Value Exceeds Criteria. Bolded values are positive results. Slightly shaded areas indicate samples potentially exceed screening criteria based on bias correction.

Criteria are from New York State Department of Environmental Conservation, Technical and Administrative Guidance and Memorandum, # 4046, Revised Jan. 24, 1994 Determination of Soil Cleanup Objectives and Cleanup Levels

Key:

J = Estimated value ("-" is biased low and "+" is biased high)

U = Non-detect at the reported practical quantitation limit

 $\mu g/Kg = micrograms/Kilogram$

Sample Identification	Date Collected	Aroclor 1242 (µg/Kg)	Aroclor 1248 (μg/Kg)	Aroclor 1254 (μg/Kg)	Aroclor 1260 (μg/Kg)	PCBs (total) (µg/Kg)
Screer	ning Criteria ⁽¹⁾		100	0 (µg/Kg)		1000 (µg/Kg)
EMC-C-01-SD-A	23-Aug-06	4300	280 U	280 U	280 U	4300
EMC-C-01-SD-B	23-Aug-06	23 U	16 J	23 U	23 U	16
EMC-C-01-SD-C	23-Aug-06	22 U	22 U	22 U	22 U	22 U
EMC-C-02-SD-A	23-Aug-06	5400	490 U	490 U	490 U	5400
EMC-C-02-SD-B	23-Aug-06	270 U	4500	270 U	270 U	4500
EMC-C-02-SD-C	23-Aug-06	96	27 U	27 U	27 U	96
EMC-C-03-SD-A	23-Aug-06	7100	530 U	530 U	530 U	7100
EMC-C-03-SD-B	23-Aug-06	24 U	22 J	24 U	24 U	22
EMC-C-03-SD-C	23-Aug-06	21 U	21 U	21 U	21 U	21 U
EMC-C-04-SD-A	23-Aug-06	1400	110 U	430	110 U	1830
EMC-C-04-SD-B	23-Aug-06	4100	260 U	260 U	260 U	4100
EMC-C-04-SD-C	23-Aug-06	22 U	22 U	22 U	22 U	22 U
EMC-C-05-SD-A	23-Aug-06	41 U	860	430	41 U	1290
EMC-C-05-SD-B	23-Aug-06	39 U	470	210	39 U	680
EMC-C-05-SD-C	23-Aug-06	410 U	3700	410 U	410 U	3700
EMC-C-06-SD-A	24-Aug-06	44 U	44 U	44 U	44 U	44 U
EMC-C-06-SD-B	24-Aug-06	85	140	93	48	366
EMC-C-06-SD-C	24-Aug-06	22 U	22 U	12 J	22 U	12
EMC-C-07-SD-A	24-Aug-06	2300 U	6000	7300	1000 J	14300
EMC-C-07-SD-B	24-Aug-06	1200 U	9900	16000	1200 U	25900
EMC-C-07-SD-C	24-Aug-06	3100 U	17000	33000	3100 U	50000
EMC-C-08-SD-A	24-Aug-06	3500 U	20000	17000	16000	53000
EMC-C-08-SD-B	24-Aug-06	6800 U	21000	16000	6800 U	37000
EMC-C-08-SD-C	24-Aug-06	30 R	390 J-	140 J-	30 R	530 J-
EMC-C-09-SD-A	24-Aug-06	7300 U	21000	16000	7300 U	37000
EMC-C-09-SD-B	24-Aug-06	4600 U	69000	4600 U	4600 U	69000
EMC-C-09-SD-C	24-Aug-06	6000 U	48000	6000 U	6000 U	48000
EMC-C-10-SD-A	24-Aug-06	200 U	3000	4000	760	7760
EMC-C-10-SD-B	24-Aug-06	74 U	830	680	74 U	1510
EMC-C-10-SD-C	24-Aug-06	39 U	230	700	170	1100
EMC-C-11-SD-A	8-Sep-06	26 U	67	24 J	26 U	91

Sample Identification Screen	Date Collected ing Criteria ⁽¹⁾	Aroclor 1242 (μg/Kg)	Aroclor 1248 (μg/Kg) 100	Aroclor 1254 (µg/Kg) 0 (µg/Kg)	Aroclor 1260 (μg/Kg)	РСВs (total) (µg/Kg) 1000 (µg/Kg)
EMC-C-11-SD-B	8-Sep-06	30 U	36	30 U	30 U	36
EMC-C-11-SD-C	8-Sep-06	29 U	64	29 U	29 U	64
EMC-C-12-SD-A	8-Sep-06	88 UJ	450 J	88 UJ	1600 J	2050 J
EMC-C-12-SD-B	8-Sep-06	42 UJ	42 UJ	42 UJ	42 UJ	42 UJ
EMC-C-12-SD-C	8-Sep-06	24 U	24 U	24 U	24 U	24 U

⁽¹⁾ Bold and Shaded Maximum Value Exceeds Criteria. Bolded values are positive results.

Criteria are from New York State Department of Environmental Conservation, Technical and Administrative Guidance and Memorandum, # 4046, Revised Jan. 24, 1994 Determination of Soil Cleanup Objectives and Cleanup Levels

Key:

J = Estimated value ("-" is biased low and "+" is biased high)

U = Non-detect at the reported practical quantitation limit

 $\mu g/Kg = micrograms/Kilogram$

Sample Identification	Date Collected	Arsenic - Total (mg/Kg)	Chromium - Total (mg/Kg)	Copper - Total (mg/Kg)	Lead - Total (mg/Kg)	Mercury - Total (mg/Kg)	Zinc - Total (mg/Kg)	Total Organic Carbon _ (mg/Kg)
Screer	ning Criteria ⁽¹⁾	7.5 (mg/Kg)	10 (mg/Kg)	25 (mg/Kg)	53 (mg/Kg)	0.1 (mg/Kg)	20 (mg/Kg)	
EMC-C-01-SD-A	23-Aug-06	7	118	340	535	0.65	1040	
EMC-C-01-SD-B	23-Aug-06							
EMC-C-01-SD-C	23-Aug-06							8630
EMC-C-02-SD-A	23-Aug-06	9.4	612	1150	1630	1.3	4540	
EMC-C-02-SD-B	23-Aug-06							53200
EMC-C-02-SD-C	23-Aug-06							
EMC-C-03-SD-A	23-Aug-06	15.1	63.4	294	282	0.61	426	
EMC-C-03-SD-B	23-Aug-06							14500
EMC-C-03-SD-C	23-Aug-06							
EMC-C-04-SD-A	23-Aug-06	5.6	135	1320	300	0.35	427	
EMC-C-04-SD-B	23-Aug-06							35100
EMC-C-04-SD-C	23-Aug-06							
EMC-C-05-SD-A	23-Aug-06	5.8	77.4	1030	426	0.29	430	
EMC-C-05-SD-B	23-Aug-06							
EMC-C-05-SD-C	23-Aug-06							40500
EMC-C-06-SD-A	24-Aug-06	10.9	21.1	80	246	2.5	198	79800
EMC-C-06-SD-B	24-Aug-06							
EMC-C-06-SD-C	24-Aug-06							
EMC-C-07-SD-A	24-Aug-06	12.4	83.6	1720	531	0.6	1600	
EMC-C-07-SD-B	24-Aug-06							
EMC-C-07-SD-C	24-Aug-06							48400
EMC-C-08-SD-A	24-Aug-06	6.2	113	458	558	0.88	927	
EMC-C-08-SD-B	24-Aug-06							59300
EMC-C-08-SD-C	24-Aug-06							
EMC-C-09-SD-A	24-Aug-06	7.1	108	771	600	1.1	770	
EMC-C-09-SD-B	24-Aug-06							
EMC-C-09-SD-C	24-Aug-06							58500
EMC-C-10-SD-A	24-Aug-06	8.8	200	859	1270	18.4	1530	
EMC-C-10-SD-B	24-Aug-06							
EMC-C-10-SD-C	24-Aug-06							86400
EMC-C-11-SD-A	8-Sep-06	10.6	67.9	511	1010	6	1150	

Sample Identification Screen	•		Chromium - Total (mg/Kg) 10 (mg/Kg)	Copper - Total (mg/Kg) 25 (mg/Kg)	Lead - Total (mg/Kg) 53 (mg/Kg)	Mercury - Total (mg/Kg) 0.1 (mg/Kg)	Zinc - Total (mg/Kg) 20 (mg/Kg)	Total Organic Carbon (mg/Kg)
EMC-C-11-SD-B	8-Sep-06							43400
EMC-C-11-SD-C	8-Sep-06							
EMC-C-12-SD-A	8-Sep-06	31.3	268	1040	892	1.8	4050	79600
EMC-C-12-SD-B	8-Sep-06							
EMC-C-12-SD-C	8-Sep-06							

⁽¹⁾ Bold and Shaded Maximum Value Exceeds

Criteria are from New York State Department 24, 1994 Determination of Soil Cleanup Objec

Key:

J = Estimated value ("-" is biased low and "

U = Non-detect at the reported practical quai

 $\mu g/Kg = micrograms/Kilogram$

samples collected show good precision. Duplicate samples S20 and S40 were all non-detect and the duplicate pair S60 had a relative percent difference (RPD) of 50%.

	Minimum Concentration (mg/Kg)	Maximum Concentration (mg/Kg)
Arsenic - Total	5.6	31.3
Chromium - Total	21.1	612
Copper - Total	80	1,720
Lead - Total	246	1,630
Zinc - Total	198	4,540
Mercury - Total	0.29	18.4
Total Organic Carbon	8630	86,400

Table 2-6 Metals and TOC Concentrations in Core Samples

Laboratory QC Samples

Data quality was evaluated based on sample integrity, holding times, method blank results, spike recoveries, surrogate recoveries, and duplicate precision. A complete sample listing for the samples analyzed is provided in the associated data review memo (Appendix A). The memos list specific analytes outside control limits and associated samples. Many results were reported below reporting limits and flagged "J" as estimated by the laboratory. Other results were flagged "J" as estimated due to minor QC deviations, noted below:

- Samples required dilution because high Aroclor concentrations were present. Surrogates diluted out of several samples. Surrogates also were high in several samples. Interference from Aroclor suspected.
- Results for samples EMC-C-12-SD-1 and EMC-C-12-SD-B qualified "UJ/J" because recovery of both surrogates was outside of control limits.
- Sample EMC-C-06-SD-B was re-extracted and reanalyzed due to conflicting results with its matrix spike/matrix spike duplicate (MS/MSD) sample. Correlation between original and re-extraction results was poor. Sample nonhomogeneity suspected.
- Samples were analyzed for metals at dilutions based on levels of zinc present.
- Copper and zinc results qualified "J" based on high RPD values for MSD analysis.

 TOC results for samples EMC-C-01-SD-C, EMC-C-06-SD-A, EMC-C-07-SD-C and EMC-C-08-SD-C were qualified "J" based on continuing calibration blank (CCB) results.

The only potential concern with sample analysis procedures that impacted data usability was that there was no surrogate recovery for sample EMC-C-08-SD-C: The sample could not be reanalyzed, the positive hits qualified "J" with a low bias, and the non-detect results were qualified "R." The results of the sample intervals A and B were very high and the interval C was low. The results are likely bias from the analytical results because this finding is not consistent with the other core data.

2.3.2 Comparison of Screening and Core Sample Results

Under a separate project for NYSDEC, a large number of samples were analyzed for PCBs using a medium-level screening sample by STL, Buffalo using the same procedure used on the Eighteenmile Creek samples. In this, E & E collected a large number of split-sample pairs that were analyzed by both the screening method and the full Method 8082 that was used on the core samples. The PCB results were compared based on the potential for decision errors and similarity of numerical results. The comparison indicates the screening data are useable for making decisions related to site characterization but that the results have a generally low bias, particularly at higher concentrations relative to the standard method PCB analytical results. A mathematical evaluation of the comparison data was completed and showed that, on average, standard Method 8082 gave results about two-thirds higher than Method 8082-screen uncorrected results. In other words, on average, Method 8082-screen results underestimate standard Method 8082 results by approximately 40%.

2.4 Nature and Extent of Contamination

Figure 2-1 depicts the PCB concentrations in the sediment samples using color coded symbols. If no PCBs were detected the symbols are clear. More detailed figures are provided in Appendix B. Figures B-1a to B-1e are a series of five maps showing PCB concentrations in the sediments focusing on specific areas of the creek. Figure B-2 summarizes all the analytical results for PCBs and metals on all samples in the study area. The following sections summarized the nature and extent of PCB and metal contamination.

2.4.1 PCB Contamination

Screening samples indicated that PCBs were detected in all areas of the creek from the Flintkote property to Stone Road. The primary Aroclors detected were Aroclor 1248 and 1254 with some samples containing Arolcor 1242 and 1260. It should be noted that Aroclors 1242 and 1248 and Aroclors 1254 and 1260 are similar chemically. If the PCBs are subject to weathering, the Aroclors are often not distinguishable.

PCBs were not detected in samples from Gulf Creek or from an overflow, emergent wetland along the right descending bank farther downstream. The PCBs appear to be located only in the primary creek bed area. A total of 29 locations indicate high concentrations of PCBs that potentially exceed NYSDEC, Technical and Administrative Guidance and Memorandum (TAGM), # 4046, Determination of Soil Cleanup Objectives and Cleanup Levels (January 24, 1994 rev). The contamination appears to be evenly distributed along the study area.

Core samples were taken from depositional areas at locations along the entire study area. The core samples collected from locations C01 to C05 and C10 to C12 showed concentrations comparable to the screening data. The cores generally had higher concentrations near the surface and lower concentrations near the bottom. Cores collected from locations C07, C08, and C09 showed much higher concentrations than the screening samples. Core C07 was collected near the former Flintkote property along with core C06. The core samples from C06 showed low concentrations of PCBs, but this core was collected nearer the bank in what may have been more of fill area. C07 was collected near the middle of creek in a depositional area and showed higher concentrations at depth. Cores C08 and C09 were collected in a depositional area after the culvert where Plank Road crosses the creek. Concentrations in these cores were higher than the concentrations in the core near the former Flintkote site and indicate another area of potential concern.

TOC concentrations in the samples were very comparable except for the TOC sample collected from C01. The TOC results were averaged for all the sediment samples to determine a single value for the screening correction (i.e., 5.1%). If the lower TOC value was eliminated, the average TOC concentration was 5.4%. The TOC values for higher average and lower concentration in C01 were used to determine site-specific criteria, as shown on Table 2-7. Most of the samples exceeded the criteria for protection of human health, benthos, and wildlife. Only the criteria for acute toxic effects for benthos were not exceeded in any of the samples.

2.4.2 Metals Contamination

Metals were found in core samples at relatively consistent concentrations. No trends that correlate the metals concentrations with the PCB concentrations are apparent. All the samples exceed TAGM soil clean-up criteria for metals. The results indicate metals concentrations in the surface sediments are a concern.

Table 2-7 Comparison of PCB Concentrations to Sediment Criteria

				Human Health Sediment	Site Specific Criteria	Benthic Aquatic Life Acute Toxicity Water	Sediment	Site Specific Criteria	Benthic Aquatic Life Chronic Toxicity Water	Sediment	Site Specific Criteria	Wildlife Bioaccum ulation Water	Sediment	Site Specific Criteria
		Result	тос	Criteria		Criteria	Criteria		Criteria	Criteria		Criteria	Criteria	
Client ID	Compound	ug/kg	gOC/kg	(ug/gOC)	(ug cpd/ kg sediment)	(ug/l)	(ug/gOC)	(ug cpd/ kg sediment)	(ug/l)	(ug/gOC)	(ug cpd/ kg sediment)	(ug/l)	(ug/gOC)	(ug cpd/ kg sediment)
Fresh Water	PCBs (total)	Avg All Other Cores	54.27	0.0008	0.043416	2	2760.8	149828.616	0.014	19.3	1047.411	0.001	1.4	75.978
Fresh Water	PCBs (total)	Core 1 Only	8.63	0.0008	0.006904	2	2760.8	23825.704	0.014	19.3	166.559	0.001	1.4	12.082
EMC-C-01-SD-A	PCBs (total)	4300			X						X			X
EMC-C-01-SD-B	PCBs (total)	16			X									X
EMC-C-01-SD-C	PCBs (total)	0												
EMC-C-02-SD-A	PCBs (total)	5400			X						X			X
EMC-C-12-SD-A	PCBs (total)	2050			X						Х			X
EMC-C-12-SD-B	PCBs (total)	0												
EMC-C-12-SD-C	PCBs (total)	0												
EMC-C-02-SD-B	PCBs (total)	4500			Х						Х			Х
EMC-C-02-SD-C	PCBs (total)	96			Х									X
EMC-C-03-SD-A	PCBs (total)	7100			Х						Х			X
EMC-C-03-SD-B	PCBs (total)	22			Х									
EMC-C-03-SD-C	PCBs (total)	0												
EMC-C-04-SD-A	PCBs (total)	1830			Х						Х			X
EMC-C-04-SD-B	PCBs (total)	4100			Х						Х			X
EMC-C-04-SD-C	PCBs (total)	0												
EMC-C-05-SD-A	PCBs (total)	1290			Х						X			X
EMC-C-05-SD-B	PCBs (total)	680			X									X
EMC-C-05-SD-C	PCBs (total)	3700			X						X			X
EMC-C-06-SD-A	PCBs (total)	0												
EMC-C-06-SD-B	PCBs (total)	910			X									X
EMC-C-06-SD-C	PCBs (total)	12			X									
EMC-C-07-SD-A	PCBs (total)	14300			X						X			X
EMC-C-07-SD-B	PCBs (total)	25900			X						X			X
EMC-C-07-SD-C	PCBs (total)	50000			X						X			X
EMC-C-08-SD-A	PCBs (total)	53000			X						X			X
EMC-C-08-SD-B	PCBs (total)	37000			X						X			X
EMC-C-08-SD-C	PCBs (total)	530			X						2 X			X
EMC-C-09-SD-A	PCBs (total)	37000			X						X			X
EMC-C-09-SD-A EMC-C-09-SD-B	PCBs (total)	69000			X									X
EMC-C-09-SD-C	PCBs (total)	48000			X						X			X
EMC-C-10-SD-A	PCBs (total)	7760			X						<u> </u>			X
EMC-C-10-SD-A EMC-C-10-SD-B	PCBs (total)	1510			X									
EMC-C-10-SD-B EMC-C-10-SD-C	PCBs (total)	1310			X									X X
EMC-C-10-SD-C EMC-C-11-SD-A	, <i>,</i> ,										Λ			
	PCBs (total)	91			X									X
EMC-C-11-SD-B	PCBs (total)	36			X									

	î.	·		Human Health	Site Specific Criteria	Benthic Aquatic Life Acute Toxicity		Site Specific Criteria	Benthic Aquatic Life Chronic Toxicity		Site Specific Criteria	Wildlife Bioaccum ulation		Site Specific Criteria
		Result	тос	Sediment Criteria		Water Criteria	Sediment Criteria		Water Criteria	Sediment Criteria		Water Criteria	Sediment Criteria	
Client ID	Compound	ug/kg	gOC/kg	(ug/gOC)	(ug cpd/ kg sediment)	(ug/l)	(ug/gOC)	(ug cpd/ kg sediment)	(ug/l)	(ug/gOC)	(ug cpd/ kg sediment)	(ug/l)	(ug/gOC)	(ug cpd/ kg sediment)
Fresh Water	PCBs (total)	Avg All Other Cores	54.27	0.0008	0.043416	2	2760.8	149828.616	0.014	19.3	1047.411	0.001	1.4	75.978
Fresh Water	PCBs (total)	Core 1 Only	8.63	0.0008	0.006904	2	2760.8	23825.704	0.014	19.3	166.559	0.001	1.4	12.082
EMC-C-11-SD-C	PCBs (total)	64			Х									
EMC-C-12-SD-A	PCBs (total)	2050			Х						X			Х
EMC-C-12-SD-B	PCBs (total)	0												
EMC-C-12-SD-C	PCBs (total)	0												

Table 2-7 Comparison of PCB Concentrations to Sediment Criteria

Historical Data Review

E & E is developing a comprehensive GIS database for the Eighteenmile Creek project area that included pollutant-generator/discharge data. The use of GIS is integral to this project because of the amount and type of data involved, the need for all team members to have access to this data, and the benefits of the visual display of analytical results. GIS technology is being used to organize, map, and analyze the geospatial data that has been collected and developed for the study area.

The Eighteenmile Creek project requires that historical data in the GIS repository be subjected to QA/QC procedures to ensure accurate analytical results. As part of this project all the known sources of PCB results in the Eighteenmile Creek project area were reviewed. Table 3-1 presents a summary of the reports reviewed. The following outlines the steps associated with the review.

- Sources were examined for PCB sediment samples that were collected in the project area. If the source was not the original source of data, an attempt was made to locate the original source.
- The PCB concentrations and sample locations were entered into the GIS database if no electronic source was available. Sample locations were digitized into the database if a map reference was not available.
- The data points were plotted on maps and checked to ensure all the points were entered correctly and map coordinates were correct.
- A chemist performed a QA review on the data to evaluate the level of quality associated with the results. Criteria evaluated were original source, knowledge of data collection and laboratory analysis procedures, and presence of supporting documentation.
- A chemist also determined the correction factor for the results so that all PCB concentrations were reported in the GIS in the same units and total concentrations.

3. Historical Data Review

- GIS analysts created a file from the original data with corrected PCB values for all sources listed on Table 3-1.
- The data was presented in a GIS website for project personnel to access.

			-
		Date	Number of
Source	QC Level	Sampled	Samples
Final Report Eighteenmile Creek Sediment Study Summary	IV	Aug-98	19
of August 17-20 and November 3, 1998 Results. December	IV	Aug-98	43
2001. Department of Environmental Conservation.			
Eighteenmile Creek Corridor: New York State Barge Canal	II	10/12/1994	1
to North Transit Road. August 2003 (rev. February 2004).	II	10/27/1995	1
New York State Department of Environmental Conserva-	Π	1987	1
tion.	II	1994	4
	III	8/7/1996	6
	IV	11/26/2002	6
	IV	4/16/2002	4
	IV	7/23/2002	6
Final Remedial Alternatives Report Site Investiga-	IV	11/26/2002	1
tion/Remedial Alternatives Report (SI/RAR). October 2005.	IV	11/26/2005	2
Niagara County Department of Planning, Development and	IV	2005	18
Tourism.	IV	4/19/2005	1
	IV	4/26/2005	1
	IV	6/16/2005	2
	IV	7/23/2002	1
	IV	9/11/2003	1
	IV	9/13/2005	11
	IV	9/14/2005	8
	IV	9/14/2006	1
	IV	9/15/2005	16
	IV	9/21/2005	10
	IV	9/22/2005	6
Sediment Sampling, Biological Analysis, and Chemical	IV	2004	16
Analysis for Eighteenmile Creek AOC, Olcott, NY. 2004.			
U.S. Army Corps of Engineers.			

Table 3-1 Summary of Historical Data Sources

3. Historical Data Review

Table 3-1 Summary of Historical Data Sources

Source	QC Level	Date Sampled	Number of Samples
Summary of Detected Sediment Sample Analytical Results	IV	4/10/2005	12
Compared to Human Health Bioaccumulation NYSEG-	IV	4/11/2005	15
Former Transit Street and State Road MGP Sites. June	IV	4/12/2005	16
2005. New York State Electric and Gas Co.	IV	4/9/2005	13

Key:

QC LEVEL

QC Level IV – Data was obtained from a known and documented source, data generation procedures were clearly documented, and quality control review was conducted by source generator.

QC Level III – Data was obtained from a known and documented source. Data generation procedures were assumed to be acceptable based on source information, but clear documentation on the level of QC was not provided.

QC Level II – Data was obtained from a secondary source. Data generation procedures could not be inferred. Sufficient information is available to make the results comparable to other datasets.

Instructions for accessing the historical data are provided in Appendix B.

Source Investigation

E & E reviewed all the data linked to the GIS that had been developed for the project to date. The data represented spill areas, hazardous waste sites, and regulatory data such as SPDES permits. Some single point source data came from other electronic databases and could not be correlated with all the GIS data collected for the project.

E & E also imported the tax parcel data for the study area to determine the landowners or businesses that were adjacent to or near the Eighteenmile Creek study area. E & E overlaid the points for the various data sources and established a link to the tax parcel data. The link allows the GIS user to evaluate potential sources near areas of PCB contamination. If a property was a hazardous waste site and known spill location, the data were linked to determine if this source had a potential relation to the PCB contamination. The GIS source relationships were added as GIS layers to make this a useful tool for the project team.

4

Conclusions and Recommendations

E & E implemented all aspects of the PCB trackdown project. The two main aspects of the project included determining PCB and metals concentrations in the study area and establishing a GIS database with historical data and known sources of environmental contamination.

4.1 Sediment Sampling

The sediment sampling program found that PCBs are present throughout the entire area of the creek. The concentrations are relatively consistent and in many of the samples exceed criteria for soil clean-up and sediment quality. The core samples indicate that PCBs are present in all sediment at depth and only reach background concentrations when native material in the creek bed is reached. The data indicate a potential continual re-suspension and movement of contaminated sediments downstream of the suspected source areas near the former Flintkote site.

The tributaries north of the wastewater treatment plant were eliminated as potential ongoing sources of PCBs. One significant hotspot of PCB contamination was identified in areas north of where Plank Road crosses the creek. The concentrations in these cores exceeded hazardous levels of PCBs. These cores are considered an anomaly and are not consistent with the other sediment samples. The data indicate another potential source of PCBs farther downstream.

The metals data show consistently elevated concentrations in all areas of the creek. The metals concentrations exceeded screening criteria, indicating that their presence could be an ongoing impairment for the AOC.

4.2 GIS Data

The development of the GIS database has resulted in a useful tool for all the stakeholders in the AOC. Future funding will provide additional opportunities to incorporate new data and enhance the interactive and analytical capabilities of the database. The database allows direct comparison of PCB concentrations in all sediment samples. The historical data review points to high concentrations of PCBs in the Barge Canal. The Aroclors detected in the Barge Canal samples are

4. Conclusions and Recommendations

the same as the Aroclors detected in the PCB sediments in creek, indicating a potential correlation.

NYSDEC is currently implementing a supplemental remedial investigation (SRI)/feasibility study (FS) at the Eighteenmile Creek Corridor (Site No. 932121), located between the Barge Canal NYSBC and Harwood Street in the City of Lockport, Niagara County, New York. One of the purposes of the study, as part of the goal to remediate the former Flintkote site, is to investigate upstream sources and concentrations of PCBs and determine the area and thickness of the contamination.

The GIS data also show that PCBs are present in areas near and around Lockport and near Burt Dam and the Eighteenmile Creek AOC. There are very few sample locations in the creek itself in areas between the Burt Dam and the AOC. The current PCB trackdown data indicate that PCB concentrations can be significant in these areas, particularly in depositional areas.

A review of the potential sources of the PCB contamination indicates that very little data are available from areas north of the industrial section of Lockport. The hot spot farther downstream of the waste water treatment plant indicates some other potential source. The results immediately downstream of the waste water plant indicate no significantly higher concentrations near the plant outflow. The aerial photographs and tax parcels indicate an area east of the canal appears to be significantly disturbed.

4.3 Recommendations

The following are recommendations for further investigation or actions to support the objectives of the RAP:

- The potential for PCB contamination north of Stone Road to the Burt Dam should be investigated similar to the current PCB trackdown work south of Stone Road. The current study showed a potential for significant contamination that was not expected in all areas. The high PCB concentrations downstream may be a continual source of PCBs to the AOC even if upstream sources are eliminated.
- The potential source of PCB contamination in the sediment at the Plank Road crossing should be investigated. The potential for runoff from PCB- contaminated areas could be investigated via soil samples and surveys of properties in this area.
- The GIS database was limited to PCB sediment contamination. The data sources contain other related data that should be included in the database to increase the capabilities of this tool for project stakeholders.

4. Conclusions and Recommendations

- Compare existing sediment chemistry data for this reach of the creek with sediment quality objectives that will be developed for the AOC by December 31, 2008.
- The hydrology, flow characteristics, and potential concentrations and types of contaminants within Eighteenmile Creek are all influenced by the Erie Canal (New York Barge Canal). Although a Soil and Water Assessment Tool (SWAT) model has been developed, the inputs from the canal complicate the modeling of hydrology within the Eighteenmile Creek watershed. An additional modeling effort should be undertaken to further and more accurately account for inputs from the canal as well as smaller tributaries. A more complete model would allow for a more accurate prediction of sediment loads and pollutant fate and transport flow- related issues throughout the creek and from the canal.
- A more complete sediment model could be combined with additional downstream data to determine the potential recovery of the creek following remediation efforts. The model also could be applied to determine if the high concentrations downstream could be accounted for by sediment re-suspension or whether new PCB sources are present.
- Develop an overall management plan for the Eighteenmile Creek watershed that ties together known air, soil, sediment, and groundwater contamination sources with priorities for the remediation of known sediment hot spots.
- Determine if any current or historical companies can be designated as potentially responsible parties for sediment contamination in Eighteenmile Creek.

Section No.: A Revision No.: 0 Date: January 2007

A Laboratory Data and Data Review Memos

(Available on CD)

Section No.: B Revision No.: 0 Date: January 2007

B PCB Trackdown Supporting Documentation

(Remainder of supporting documentation is available on CD.)

Table B-1	ist of Photographs Included on CD
Sample ID	Photos
EMC-C-01-SD	Core Photo.
EMC-C-02-SD	East Direction.
EMC-C-03-SD	Photo Unavailable.
EMC-C-04-SD	Northeast Direction.
EMC-C-05-SD	Core Photo, North and South Direction.
EMC-C-06-SD	North and South Directions.
EMC-C-07-SD	Core Photo, North, South and East Direction.
EMC-C-08-SD	Core Photo, South and East Direction.
EMC-C-09-SD	Core and Northwest Direction.
EMC-C-10-SD	Core Photo and Northwest Direction.
EMC-C-11-SD	Core Photo and Northeast Direction.
EMC-C-12-SD	Core Photo.

			eening Sample Desch	Core							
				Location		Water	Distance		Water		
Sample ID	Date	Bank	Sediment Composition	Potential	Depth	Depth	from Bank	Time	Flow	Weather	Notes
EMC-S01-SD	6-Jul-06	Rdb	sand/silt, saturated, silt/clay	no	10"		5'				
EMC-S02-SD	6-Jul-06	Rdb	fine sand/silt, saturated, organics, silt/clay		14"				low		
EMC-S03-SD	6-Jul-06	Ldb	silt sand, organics, rock/gravel		12"	2.5'	3'		low		
EMC-S04-SD	6-Jul-06	Ldb	silt/sand organics, gravel		6"	4"			low		
EMC-S05-SD	6-Jul-06		silt, sand, organics, silt/clay, gravel/rock		6"		8'		mod-high		
EMC-S06-SD	6-Jul-06	Ldb	silt, coarse sand, gravel, organics, silt/clay		8"	4"			low		
EMC-S07-SD	6-Jul-06		coarse material, coarse sand/gravel		14"	6"					
EMC-S08-SD	6-Jul-06		coarse sand, small gravel, rock/shell fragments		12"	12"					
EMC-S09-SD	6-Jul-06	Ldb	coarse sand, gravel, peb- ble, some silt	potential	2.5'		10"				
EMC-S10-SD	6-Jul-06	Ldb	coarse sand, pebble, silts, clay/silt	potential	2.5'	18"	6'				
EMC-S11-SD	6-Jul-06	Rdb	coarse sand, gravel, silts, silt/clay	potential	2.5'	10"			mod-high		
EMC-S12-SD	6-Jul-06	Ldb	silt, silt/clay, fine sand, organic	potential	3'	20"	3'				
EMC-S13-SD	6-Jul-06	Ldb	silts, organics, silt/clay, sand	yes	4"	12"	8'				
EMC-S14-SD	6-Jul-06	Ldb	silts, organics, silt/clay, sand	yes	18"				high		
EMC-S15-SD	6-Jul-06	Ldb	dark organics, silt, fine sand, silt/clay, sand gravel	yes	3'	18"	3'				
EMC-S16-SD	6-Jul-06	Ldb	fine -coarse sand, silt, or- ganics	yes		16"	3'		low		
EMC-S17-SD	6-Jul-06	Ldb	organic, silt/sand, silt/clay, clay, loose	yes	3'	5"	2'		low		
EMC-S18-SD	6-Jul-06		organic, silt, sand, silt/clay	yes		4"	4'				

Table B-2	Summar	y 01 3010	eening Sample Descri	Core							
				Location		Water	Distance		Water		
Sample ID	Date	Bank	Sediment Composition	Potential	Depth	Depth	from Bank	Time	Flow	Weather	Notes
EMC-S19-SD	14-Jul-06	Rdb	silt w/ fine sand	potential	6"	1.5'	1'		low	OC, humid-	
										80*, wind 1-5	
										SW	
EMC-S20-SD	14-Jul-06	Rdb	silty clay, clay w/ gravel	potential		2'		9:11	low	OC, humid-	
			coarse sand							80*, wind 1-5	
										SW	
EMC-S20-SD-D)-SD-D 14-Jul-06 Rdb	Rdb	silty clay, clay w/ gravel	potential		2'		9:15	low	OC, humid-	
			coarse sand							80*, wind 1-5	
										SW	
EMC-S21-SD	14-Jul-06	Rdb	coarse sand, gravel, some		6"	2'	15'			OC, humid-	
			silt							80*, wind 1-5	
										SW	
EMC-S22-SD	14-Jul-06	Ldb	litter, gravel, coarse sand,		8"	1.5'	3'		stagnant	OC, humid-	Gulf Ck 35' from conflu-
			some silt							80*, wind 1-5	ence with 18 Mile Ck, 18'
										SW	from bridge
EMC-S23-SD	14-Jul-06	Ldb	litter, coarse sand, some	potential	8"	10"	4'		stagnant	OC, humid-	Gulf Ck, upstream from
			gravel, silts							80*, wind 1-5	bridge, stagnant water
										SW	
EMC-S24-SD	14-Jul-06	Rdb	litter, silts, sand, clay		10"	1.5'	4'		low	OC, humid-	downstream confluence of
										80*, wind 1-5	18 Mile and Gulf Creeks
										SW	
EMC-S25-SD	14-Jul-06	no de-	silt, sandy silt, loam w/	potential	8"	3"	center pool		stagnant	OC, humid-	Overland drainage; small
		scend-	coarse sand							80*, wind 1-5	stream/wetland flows E-
		ing bank								SW	SE, sample from middle
											pool 35' from confluence
											with 18 Mile Ck.
EMC-S26-SD	14-Jul-06	Rdb	silts, silty clay w/ organics		10"	6"	3'	11:00	stagnant	OC, humid-	Overland drainage, wetland
										80*, wind 1-5	downstream from conflu-
										SW	ence of EMC-s15-SD sam-
											ple
EMC-S27-SD	14-Jul-06	Rdb	silts, fine sand, organic in		8"	2'	4'	11:08	moderate	OC, humid-	
			upper layer							80*, wind 1-5	
										SW	

Sample ID	Date	Bank	Sediment Composition	Core Location Potential	Depth	Water Depth	Distance from Bank	Time	Water Flow	Weather	Notes
EMC-S28-SD	14-Jul-06	Rdb	silt, sand loam, organics	potential	16"	10"		11:15	low	OC, humid- 80*, wind 1-5 SW	18' downstream from con- fluence of small stream and 18 Mile Ck
EMC-S29-SD	14-Jul-06	Rdb	deep, soft silt, fine sand, organics	potential	12"	1'	5'	11:30	low	OC, humid- 80*, wind 1-5 SW	dark sediments w/ petro- leum odors
EMC-S30-SD	14-Jul-06	Rdb	silt, fine sand, loam	potential	14"	12"		11:35	moderate	OC, humid- 80*, wind 1-5 SW	dark sediments w/ petro- leum odors
EMC-S31-SD	14-Jul-06	Rdb	saturated silts w/ organic material, silty clay, fine sand		14"	1.5'	5'	11:56	moderate	OC, humid- 80*, wind 1-5 SW	soft, dark sediments w/ petroleum odors
EMC-S32-SD	14-Jul-06	Ldb	organic w/ silts, clay		12"	6"	1'	12:05	moderate	OC, humid- 80*, wind 1-5 SW	
EMC-S33-SD	14-Jul-06	Rdb	silt, organics, coarse sand/gravel	difficult	12"	1'		12:25	low	OC, humid- 80*, wind 1-5 SW	
EMC-S34-SD	14-Jul-06	Rdb	silt and organics, clay, some gravel	difficult	14"	2'	5'		moderate	OC, humid- 80*, wind 1-5 SW	
EMC-S35-SD	14-Jul-06	Ldb	soft and saturated, silt, organics, fine/coarse sand		8"	1.5'	4'		low	OC, humid- 80*, wind 1-5 SW	
EMC-S36-SD	14-Jul-06	Ldb	silt, with organics, fine/coarse sand	potential	10"	2'	3'	14:15	low	OC, humid- 80*, wind 1-5 SW	strong odor
EMC-S37-SD	14-Jul-06	Ldb	silt, organics, fine sand, saturated	potential	14"	6"	3'	14:30	low	OC, humid- 80*, wind 1-5 SW	
EMC-S38-SD	14-Jul-06	Rdb	silts w/ organics	potential	12"	1'		14:40	moderate	OC, humid- 80*, wind 1-5 SW	

Table B-2	Gammary	01 001	eening Sample Descri	Core							
Comula ID	Dete	Dank		Location	Dauth	Water	Distance	Time	Water	Weather	Notes
Sample ID EMC-S39-SD	Date 14-Jul-06	Bank Ldb	Sediment Composition silt w/ fine sand and or-	Potential	Depth >3'	Depth 10"	from Bank	Time 14:50	Flow low	OC, humid-	very dark, w/ oil sheen in
EMIC-539-5D	14-Jul-00	Lab		potential	>3	10		14:50	IOW	80*, wind 1-5	water after pulling auger
			ganics							SW	water after putting auger
	14-Jul-06	D 11			>14"	21	3'	15.15	1.	OC, humid-	
EMC-S40-SD	14-Jul-06 Kdb	06 Rdb	soft and deep, silt,	potential	>14	2'	5	15:15	low	· · · · · · · · · · · · · · · · · · ·	
			silty/clay, w/ coarse sand							80*, wind 1-5	
		~ "	mixed organics						-	SW	
EMC-S40-SD-D	14-Jul-06 Rdb	Rdb	soft and deep, silt,	potential	>14"	2'	3'	15:15	low	OC, humid-	
			silty/clay, w/ coarse sand							80*, wind 1-5	
			mixed organics							SW	
EMC-S41-SD	14-Jul-06	Rdb	super-saturated silt and	potential	>14"	2'	4'	15:35	low	OC, humid-	
			organic material/dark							80*, wind 1-5	
										SW	
EMC-S42-SD	14-Jul-06	Rdb	silts and organics with fine	potential	12"	2.5'	6'	15:45	moderate	OC, humid-	soft deep sample area
			sand							80*, wind 1-5	
										SW	
EMC-S43-SD	14-Jul-06	Rdb		potential	14"	2'	3'		low	OC, humid-	soft deep sample area
									80*, wind 1-5		
										SW	
EMC-S44-SD	14-Jul-06	-Jul-06 Rdb	Rdb silt and organic layer,	potential	8"	6"	4'	16:15	low	OC, humid-	
			coarse sand							80*, wind 1-5	
										SW	
EMC-S45-SD	14-Jul-06	Rdb	silt w/ organics, clay/silt,	potential	14"	2'			moderate-	OC, humid-	
			some coarse sand	*					fast	80*, wind 1-5	
										SW	
EMC-S46-SD	27-Jul-06	Rdb	silts/silty clay	potential	10"	14"		8:50	low	Humid-90*,	
			5 5	1						OC, drizzle,	
										wind 8-15 SW	
EMC-S47-SD	27-Jul-06	Rdb	coarse sand, gravel, some		10"-12"	10"-12"	4'	9:00	moderate-	Humid-90*,	
			silt						fast	OC, drizzle,	
										wind 8-15 SW	
EMC-S48-SD	27-Jul-06	Rdb	silts, some coarse sand,		10"-12"	6"-10"	4'	9:30	low-slack	Humid-90*,	
	_, tu 00		organics, gravel					2.20		OC, drizzle,	
										wind 8-15 SW	

	Summary		eening Sample Descri	•							
				Core Location		Water	Distance		Water		
Sample ID	Date	Bank	Sediment Composition	Potential	Depth	Depth	from Bank	Time	Flow	Weather	Notes
EMC-S49-SD	27-Jul-06	Rdb	silt, organic material, silt	potential	14"	8"	1'	9:15	fast	Humid-90*,	
			and clay							OC, drizzle,	
										wind 8-15 SW	
EMC-S50-SD	27-Jul-06	Rdb	organic, silt, coarse sand	potential	>12"	2'	20'	9:48	low	Humid-90*,	between EMC-s20-SD and
										OC, drizzle,	EMC-s21-SD in tree fall
										wind 8-15 SW	
EMC-S51-SD	27-Jul-06	Rdb	silts, coarse sand, organic		8"	0	center pool	10:05	none	Humid-90*,	collected in overland drain-
			material							OC, drizzle,	age 3' from confluence, no
										wind 8-15 SW	water, but saturated.
EMC-S52-SD	27-Jul-06	no de-	mud bottom	potential	10"	0	center pool	10:20	none	Humid-90*,	collected in overland drain-
		scend-								OC, drizzle,	age up from confluence,
		ing bank								wind 8-15 SW	no water, but damp.
EMC-S53-SD	27-Jul-06	no de-	organics, silt, silt-clay,		12"	0	center bare	10:35	none	Humid-90*,	collected in forested wet-
		scend-	clay				ground			OC, drizzle,	land up gradient from
		ing bank								wind 8-15 SW	EMC-s52-SD near aban-
											doned road. Source may
											be run-off from steeper
											eastern slope, or from main
											creek over flow events.
EMC-S54-SD	27-Jul-06	no de-	damp and soft	potential	8"	0	center bare	10:52	none	Humid-90*,	collected in emergent for-
		scend-					ground			OC, drizzle,	ested wetland
		ing bank								wind 8-15 SW	
EMC-S55-SD	27-Jul-06	no de-	organic layer, silt, silt-clay		10"	0	center bare	11:10	none	Humid-90*,	in side drainage, shallow
		scend-					ground			OC, drizzle,	overland overflow approx.
		ing bank								wind 8-15 SW	80' from EMC-s25-SD
EMC-S56-SD	27-Jul-06	main	silt, w/ coarse sand, organ-		12"	4'		11:25	moderate	Humid-90*,	collected near EMC-s26-
		channel	ics, silty clay							OC, drizzle,	SD and EMC-s28-SD in
										wind 8-15 SW	mid-channel of CK toward
											Ldb
EMC-S57-SD	27-Jul-06	Ldb	organics, silt, coarse sand,	potential	14"	3'	2'	11:40	moderate	Humid-90*,	across from EMC-s29-SD
			clay/silt clay							OC, drizzle,	
										wind 8-15 SW	

Sample ID	Date	Bank	Sediment Composition	Core Location Potential	Depth	Water Depth	Distance from Bank	Time	Water Flow	Weather	Notes
EMC-S58-SD	27-Jul-06	Rdb	silty organic, clay, coarse sand, rock-hard pan	potential	8"	3.5'		11:56	fast	Humid-90*, OC, drizzle, wind 8-15 SW	between EMC-s30-SD and EMC-s31-SD
EMC-S59-SD	27-Jul-06	Ldb	silty organic, clay, coarse sand		12"	2'		12:15	low	Humid-90*, OC, drizzle, wind 8-15 SW	between EMC-s32-SD and EMC-s33-SD
EMC-S60-SD	27-Jul-06	Rdb	silty, heavy organic, coarse sand	potential	12"	14"		12:25	low	Humid-90*, OC, drizzle, wind 8-15 SW	sample collected down- stream of EMC-s33-SD
EMC-S60-SD-D	27-Jul-06	Rdb	silty, heavy organic, coarse sand	potential	12"	14"		12:25	low	Humid-90*, OC, drizzle, wind 8-15 SW	sample collected down- stream of EMC-s33-SD
EMC-S61-SD	27-Jul-06	Rdb	rocky, thin layer of silt, coarse sand, clay, rock throughout		6"	1.5'	4'	13:15	moderate	Humid-90*, OC, drizzle, wind 8-15 SW	
EMC-S62-SD	27-Jul-06	Ldb	silt w/ organic, coarse sand, red clay, gravel and rock, clay gleyed gray		10"	3.5'	5'	13:25	moderate	Humid-90*, OC, drizzle, wind 8-15 SW	
EMC-S63-SD	27-Jul-06	Ldb	silt, coarse sand, organics, silty/clay	potential	10"	10"	9"	13:40	moderate	Humid-90*, OC, drizzle, wind 8-15 SW	deep soft sediment
EMC-S64-SD	27-Jul-06	Ldb	dark organic silt, coarse sand, clay, pebble	potential	10"	6"	3'	14:00	moderate	Humid-90*, OC, drizzle, wind 8-15 SW	
EMC-S65-SD	27-Jul-06	Ldb	organic, silts, clay	potential	12"	10"	3'	14:20	low	Humid-90*, OC, drizzle, wind 8-15 SW	
EMC-S66-SD	27-Jul-06	Ldb	silty, w/ organics, clay		14"	3.5'		14:40	low	Humid-90*, OC, drizzle, wind 8-15 SW	
EMC-S67-SD	27-Jul-06	Rdb	silt, coarse sand, organics, clay/silt		14"	2'		14:55	low	Humid-90*, OC, drizzle, wind 8-15 SW	

	Summary		eening Sample Desch	Core							
Sample ID	Date	Bank	Sediment Composition	Location Potential	Depth	Water Depth	Distance from Bank	Time	Water Flow	Weather	Notes
EMC-S68-SD	27-Jul-06	Ldb	silt, organics, tight clay		12"	4'		15:05	low	Humid-90*, OC, drizzle, wind 8-15 SW	
EMC-S69-SD	27-Jul-06	Rdb	silt, coarse sand, organics	potential	10"	2.5'	5'	15:25	low	Humid-90*, OC, drizzle, wind 8-15 SW	
EMC-S70-SD	27-Jul-06	Rdb	silt, coarse sand, organic, saturated		12"	1.5'		16:10	low	Humid-90*, OC, drizzle, wind 8-15 SW	downstream 2' from tribu- tary very little flow in trib.
EMC-S71-SD	27-Jul-06	Rdb	silt w/ sand and rock, or- ganics, red gleyed clay		10"	1.5'	4'	16:40	mod-high	Humid-90*, OC, drizzle, wind 8-15 SW	
EMC-S72-SD	27-Jul-06	Rdb	silt, coarse sand, gravel, pebble		8"	1'	1'	17:10	high	Humid-90*, OC, drizzle, wind 8-15 SW	fast water in narrow chan- nel
EMC-S73-SD	27-Jul-06	Ldb	silt, coarse sand, pebble, gravel, rock		10"	6"		17:20	high	Humid-90*, OC, drizzle, wind 8-15 SW	fast water in narrow chan- nel
EMC-S74-SD	28-Jul-06	Ldb	organic, roots, silt, silt/clay, saturated		8"	2.5'		11:55	low-mod	Humid-90*, OC, wind 5-10 SW	collected 15' upstream from EMC-s02-SD in slach water
EMC-S75-SD	28-Jul-06	Ldb	silt, coarse sand, gravel, pebble		8"	8"		12:20	low	Humid-90*, OC, wind 5-10 SW	collected near EMC-s06- SD
EMC-S76-SD	28-Jul-06	Ldb	silt w/ coarse sand, or- ganic, gravel, clay		8"	6"		12:35	high	Humid-90*, OC, wind 5-10 SW	collected near EMC-s10- SD and EMC-s11-SD near old structure creating fast flow of water, sample from eddy
EMC-S77-SD	28-Jul-06	Rdb	silt, coarse sand, gravel, pebble		7"	1'		12:50	high	Humid-90*, OC, wind 5-10 SW	collected near EMC-s10- SD and EMC-s11-SD near old structure creating fast flow of water, sample from eddy

Core Location Water Distance Water Sample ID **Sediment Composition** Date Bank **Potential** Depth Depth from Bank Time Flow Weather Notes P/C 65*-75* 8- extracted from EMC-C-11-EMC-S78-SD 9-Sep-06 organic, silts, some coarse 4' 9:00 Rdb 12" 12" yes low SD from profile A sand, gray 15 SW P/C 65*-75* 8-EMC-S79-SD 8" 9-Sep-06 Rdb coarse sand, minor silts, 7" 3' low 7" gravel/pebble, coarse 15 SW sand: up Gulf Creek above organic, mid-stream terrace EMC-S80-SD-D 9-Sep-06 7" gravel/pebble, coarse coarse sand, minor silts, 8" 7" 3' P/C 65*-75* 8-Rdb low sand: up Gulf Creek above organic, 15 SW mid-stream terrace

B. PCB Trackdown Supporting Documentation

Accessing the website containing the GIS Database:

"Access to the PCB Trackdown study ArcIMS website can be obtained by authorized persons by contacting Ecology and Environment's GIS group at 716-684-8060 ext 2242.

The website URL is <u>http://gis3.ene.com/eighteenmile/viewer.htm</u> and is viewable with your internet browser without any special downloads or installations"

After the URL is loaded enter your username and password as noted below.

?	Enter username and password for "Protected by Authentix" at http://gis3.ene.com User Name:
	eighteen
	Password: Password is "mile"
	Use Password Manager to remember this password.