DRAFT

(2-22-89)

1

SED-3

CHEMICAL CONTAMINANTS IN SEDIMENTS OF NEW YORK TRIBUTARIES TO LAKE ONTARIO

- 5

Simon Litten

October, 1988

New York State Department of Environmental Conservation Division of Water Bureau of Technical Services and Research

DRAFT

RECEIVED

FEB 21 1989

MANAGEMENI COUNCIL

ACKNOWLEDGEMENTS

Special thanks are owed to Robert Weinbloom and his staff of the New York State Department of Health Wadsworth Center for Laboratories and Research. John Donlon and Tracy Davenport both of NYSDEC assisted with sampling. Local sampling assistance was given by Berton Mead, Steve Eidt, Lisa Spittal, and Paul Foersch of NYSDEC Region 6, NYSDEC Region 7, Monroe County Department of Health, and NYSDEC Region 9 respectively. Thomas Callahan took a risk in allowing us access to the Burt Dam and Harold Allen, along with his divers, ensured that the risk would be minimal.

Frank Estabrooks and John Ryan made the project possible.

Concern for toxic contaminants entering Lake Ontario has prompted establishment of a bi-national project, the Lake Ontario Toxics Management Plan, to study the extent of the problem and make recommendations for the restoration of the affected While point sources are recognized as a component of resources. toxics loading, the great bulk of loading seems to originate from the tributaries to the Lake. Tributaries from the New York side considered potentially significant toxics sources are, ignoring the Niagara which is a shared waterway and treated elsewhere, Eighteenmile Creek, Genesee River, Oswego River, and Black River. Eighteenmile Creek, the Genesee and Oswego Rivers have also been designated by the International Joint Commission (IJC) as Areas of Concern (AOCs). The AOCs are or will be subjects of focused efforts to identify waterbody problems and devise a plan of remedial action. Chemically contaminated sediments are a major part of the perceived problem at all of the New York AOCs but little information is available on the scope of contamination, on comparisons between AOCs, and on interpretation of the significance of the contaminants.

The problem of contaminated sediments can be approached in three ways each having advantages and disadvantages. The simplest is to establish a criterion for bulk sediment contaminant concentrations against which measurements can be compared. The second approach assumes that chemicals in bioavailable sediments should not exceed a background concentration. The third approach depends on the outcome of toxicity tests. Criterion methods necessitates setting rational limits which if exceeded would result in increased risk of harm. So far such limits have not been available. Part of the difficulty is the physically heterogeneous nature of sediment samples. Different sediments may have, depending on particle size and organic content, differing affinities for contaminants. The U.S. Environmental Protection Agency (EPA) is currently pursuing the criterion approach and is attempting to use contaminant affinity characteristics to predict interstititial water concentrations of non-polar organics given a particular bulk contaminant concentra-The predicted interstitial water chemical concentrations tion. could then be compared against existing water quality criteria. The chemistry of metal/sediment interactions is presently considered too poorly understood to allow predictions based on knowing bulk sediment concentrations (Zarba, 1988). The U.S. Army Corps of Engineers (USCOE) has used elutriate tests to characterize metal release and EPA is investigating in situ interstitial water samplers for assessing metals.

()

The background approach assumes a naturally dictated concentration that should not be exceeded. Certain Great Lakes sediments are relatively rich in metals such as copper and zinc. Concentrations of these naturally occurring substances are to be expected but not at artificially enriched levels. Synthetic contaminants, PCBs, and mirex as examples, ought not to be present at all. A modified background method was suggested by EPA (U.S. Region V, 1977). Great Lake harbors were surveyed, visually classified as nonpolluted, moderately polluted, and highly polluted, and sediment samples were taken. Sediment chemical concentrations were assessed and breakpoints were established. Thus, for example, zinc concentrations greater than 200 mg/kg are characteristic of polluted harbors and zinc concentrations less than 90 mg/kg are characteristic of non-polluted harbors. This method is very attractive in its ease of application. Table 1 shows that its values seem to make sense in at least one well studied Great Lakes tributary, the Buffalo River. The table shows the EPA guidelines as lower (boundary between non- and moderately polluted) and upper (boundary between moderately- and highly polluted) values and Buffalo River medians from the industrially affected portion and upstream in an urban/residential area.

TABLE 1

COMPARISON OF EPA SEDIMENT GUIDELINES WITH HEAVILY AND MODERATELY POLLUTED BUFFALO RIVER SEGMENTS (all values in mg/kg)

substance	EPA g lower	uidelines upper	Buffalo River urban/residential n=16	
iron	17,000	25,000	1,110	31,700
nickel	20	50	17.9	38.5
manganese	300	500	179	623
cadmium	NA	6	ND	1.88
chromium	25	75	5.21	22.0
copper	25	50	15.6	57.3
lead	40	60	30.4	90.5
zinc	90	200	52.5	238
mercury	NA	1	ND	0.41
PCB	NA	10	0.096	0.969

The counterargument for the background tactic is that sediment remediation is extremely costly and of uncertain public accability. Because of these costs a strong demonstration of actual or potential harm is required. Simple observation of a chemical in exceedence of background is not a convincing argument for action. Furthermore, it is not always apparent what should be used as a background, especially in tributaries where the local geology is not well known.

Biological toxicity tests can provide the demonstration of harm lacking in the background approach and obtainable only through difficulty by the criterion method. Biological testing procedures have been used by the New York State Department of Environmental Conservation (NYSDEC) on Niagara River area sediments (Litten, 1988) and by the USCOE on Oswego harbor sediments. Drawbacks from biological testing are chiefly in the abundance and diversity of organisms and effects. Biological tests for

sediment toxicity include Microtox (Bulich, 1984), algal photosynthesis bioassay (Ross, Jarry, and Sloterdijk, 1987), fish bioaccumulation (Litten, 1988), Ames test (Ames, McCann, and Yamasaki, 1975), zooplankton life cycle test (Mount and Norberg, 1984), and invertebrate bioassays (Nebeker et al, 1984). Black et al. (1985) has induced tumors by painting sediment extracts on fish.

The failure to observe a particular toxic response in one organism does not rule out other toxic responses. For example, absence of acute toxicity in an organism does not mean that a longer term test would not reveal kidney damage or liver tumors or the target effect in another species. Also there are several distinct habitats between sediments and water inhabited by different species.

Regardless of the use to which sediments are put once collected, sampling alone provides significant challanges. Analytical results of closely spaced samples often show very large differences. This may be due to real environmental heterogeneity alone or a combination of environmental heterogeniety and laboratory imprecision. One way to lessen the impact of environmental heterogeneity is to collect sediment cores instead of simple grab samples. A core has the advantage of repeated samples from a hydrologically and depositionally consistant point. If one assumes that sedimentation is occurring in an orderly fashion, a core also samples time. The bottom of the core represents older material than the top. In many dredged harbors the natural stratrigraphy is jumbled but radiodating techniques can be used to verify continunity. Cores are also needed for estimating contaminant mass and in predicting the consequences of dredging. At the same time it should be realized that coring is not always possible because of the physical problems in bringing in the needed machinery or inadequate depth of recoverable sediment.

The interpretive and sampling problems in sediment work make decisions on small samples tested for limited characteristics risky. There are few sites where the evidence for real or potential harm is overwhelming. Usually numerous samples and tests are needed to establish a case for a particular course of action beyond normal practice.

Here data are presented from work performed on Eighteenmile Creek, Genesee River, Oswego Harbor and the Black River. Figure 1 shows the locations of the sampled areas. Besides a review and discussion of historical data, we also show new data produced by NYSDEC from sampling performed in October of 1987 and May of 1988. The majority of the NYSDEC samples were cores taken with a Vibracorer. The Vibracorer has a compressed air driven vibrating head that pushes a steel barrel into sediments. The barrel has a cutting head and back projecting stainless steel fingers that help hold sediments in a Lexan tube carried within the barrel (Figure 2). The assembly is operated from a pontoon boat equipped with an air compressor, a tripod derrick, and anchoring spuds. One sample from Eighteenmile Creek (Clinton Street) was taken with a mini-Ponar and the other upstream samples were made with hand driven corers. Cores collected from the Burt Dam in Eighteenmile Creek were taken by commercial divers (Allen Marine Services). Cores were kept in a near vertical position and, when sufficiently long, were sectioned at the laboratory. Chemical analyses for NYSDEC were performed by the New York State Health Department at the Wadsworth Center for Laboratories and Research. Metals analyses were accomplished using ICP. Sediment characteristics were assessed by total volatile solids (TVS), total organic carbon using the persulfate-ultraviolet oxidation method (TOC-1), and total organic carbon using the combustion-infrared method (TOC-2). All samples were also tested for PCBs and Oswego River samples were additionally analyzed for organochlorine pesticides.

_ _ _

Eighteenmile Creek

Eighteenmile Creek receives treated wastes from the City of Lockport and Harrison Radiator. These discharges enter above two small power dams at the hamlets of Newfane and Burt. The creek discharges into Lake Ontario at Olcott hamlet. The USCOE maintains the mouth of Eighteenmile Creek. Recent sediment work has been performed for USCOE (T.P. Associates International, Inc, 1987) and EPA (Kizlauskas, Rockwell, and Claff, 1981). Sample locations from EPA, USCOE, and NYSDEC are shown in Figure 3. Table 2 summarizes results from the EPA and USCOE activities.

Metal concentrations reported by USCOE at the mouth showed one site that was far more heavily contaminated than the others (Table 2, USCOE sites 3 and 3B). Of the 15 substances measured and with EPA-Region V Guidelines for non-polluted, moderately polluted, and heavily polluted, sample USCOE-3 and its replicate (3B) had 9 and 10 substances respectively at concentrations indicitative of heavily polluted harbors. All the other six samples had two substances in the heavily polluted range. EPA samples 4 and 3 had the higher concentrations. EPA-4 corresponds roughly with USCOE-3 and is close to NYSDEC-Olcott Bar.

NYSDEC cores were taken from a mud bar in the Olcott harbor and upstream of the dredged area at Olcott. Other samples were taken behind the dams at Burt and Newfane, from the confluence of Eighteenmile Creek and a small creek called "The Gulf", within the City of Lockport, and, for controls, from the East Branch Eighteenmile Creek. Initially a single East Branch grab sample was collected but the area was revisited in May of 1988 to confirm the sample results. NYSDEC attempted to repeat the USCOE-3 sample but was unable to recover material from the site indicated in the USCOE Report map. A near-by core recoverd by NYSDEC did not show the elevated concentrations. On the other hand, NYSDEC samples from upstream sites were found to have exceedingly high metal concentrations. Figure 4 displays selected zinc concentrations from all Eighteenmile Creek sites visited by NYSDEC. Results of the NYSDEC project appear in Appendix A.

Note that control samples on the East Branch had concentrations as high as 770 mg/kg and a sample from behind the Newfane Dam had over 2% zinc. Other metals showed a similar pattern of very high concentrations at Newfane and low concentrations at Olcott. The dams appear to be effective traps of metals on particles. However, some breakthrough was seen in the top two inches of the Olcott core for zinc, copper, titanium, and chromium. 7

When compared with the EPA and USCOE data, NYSDEC results from the two lower river cores at Olcott Bar and Upstream of Rt. 18 Bridge are lower for lead and mercury and possibly lower for zinc, arsenic, copper and chromium. NYSDEC barium and iron values are slightly higher than comparable values from the USCOE and, at least for barium, EPA. At this time it is impossible to determine if the differences are due to sampling or laboratory methods.

The high concentrations from the NYSDEC control site are puzzling. Concentrations at the control site are significantly higher than those downstream at Olcott. One hypothesis held that the control site might have been influenced by bridge painting metals but the bridge over the East Branch on Route 104 is concrete. The site is also below the Niagara escarpment. One of the geological units in the escarpment, the Rochester Shale, is rich in zinc, copper, lead and arsenic (Litten, 1988). Table 3 compares metal concentrations from literature value for Lake Ontario background (Mudroch, 1983), Rochester Shale, Eighteenmile

TABLE 3

COMPARISON OF METAL CONCENTRATIONS IN ROCHESTER SHALE, EAST BRANCH EIGHTEENMILE CREEK, AND OLCOTT CORE MEANS (mg/kg)

	As	Cđ	Cr	Cu	Pb	Ni	Zn
Lake Ontario background (Mudroch, 1983)	NA	NA	50	100	25	100	100
Rochester Shale (max.)	112	8.4	28	260	472	76	5800
Rochester Shale (mean)	34	NC	24	41	132	24	761
18-Mile Control Site	3.3 2.9 2.8 8.3	<2 <2 <2 <2	20 20 17 34	23 13 28 142	34 21 44 216	28 28 23 32	175 95 770 564
Olcott Core (mean) (n = 15)	1.6	<2	25	21	5	28	90

NC - not calculated due to excessive non-detect observations.

Creek control site observations, and Olcott means.

Table 3 illustrates problems in use of the background approach to evaluate sediments. A geological explanation is possible for the erratic and high metal concentrations seen at the control site. Generally accepted backgrounds, for example Lake Ontario deposition zone sediments below the <u>Ambrosia</u> horizon, may underestimate relevant natural metal concentrations. We do not rule out the possibility that an as yet unknown source contaminated the control area.

The metals found in high concentration are associated with manufacturing. They include lead (maximum of 4760 mg/kg), chromium (maximum of 2750 mg/kg), cobalt (maximum of 25 mg/kg), and tin (maximum of 1100 mg/kg).

Toxicity experiments have not been conducted in the most contaminated sites. It would be appropriate to examine these sediments for aquatic invertebrates. The site supports aquatic plants which grow in profusion.

Genesee River

Manufacturing, brewing, and chemical plant wastes have been discharged to the Genesee as well as urban storm sewers from the City of Rochester. The Genesee empties into Lake Ontario. Its mouth is also maintained for navigation by the USCOE. Genesee River sediments have been investigated by the Monroe County Department of Health (1986) and EPA (Kizlauskas, Rockwell, and Claff (1984). Monroe County performed two sets of samples. The first, conducted on May 16, 1984, examined composited cores from the upper and lower turning basins. None of the pesticides, PCBs, volatiles, acid/phenolics, or base/neutrals sought were present above the detection limits. The second set of 14 samples were taken on August 2/3, 1984. This second set contained detectable concentrations of PAHs, chloroform, and toluene. The EPA sampling was performed on May 3, 1981. The lower detection limits used by EPA resulted in frequent observations of PCBs and pesticides. Sample locations are shown in Figure 5. Metal results, and for EPA PCB results, for lower river sites are shown in Table 4.

NYSDEC samples were taken on the west side of the lower river above the portion heavily used by pleasure craft and commercial shipping. Sample locations are presented in Figure 5. Three cores were retrieved ranging from 18 to 26 inches in length. Each core was sectioned into two inch intevals and each interval was analyzed for metals, PCBs, total organic carbon, and total volatile solids. Results are given in Appendix A. Figure 6 illustrates the distributions of chemicals with depth for each of the cores through the example of zinc.

The highest concentrations for almost all substances occurred between 4 and 10 inches in NYSDEC-2. Elevated concentrations also appeared in the bottom four segments of NYSDEC-1. The NYSDEC maxima for barium, copper, mercury, chromium, PCB, beryllium, and zinc were at least twice those reported by Monroe County or EPA even from sites closer to known contaminant sources. A few metals, silver and arsenic, were not found in higher concentrations in NYSDEC samples despite the greater sample size. Large variations in depth distribution between closely spaced cores suggest sediment reworking. The only potential contaminant source within the reach sampled by DEC is construction demolition disposal site operated between 1951 and 1970.

Oswego Harbor

1

The Oswego River receives water from the Seneca River, the Oneida River, and Onondaga Lake. Onondaga Lake itself is the recepient of the City of Syracuse's effluent as well as current and historical wastes from chemical and metals industries. A single sample was recoverd in the river's mouth near the western shore. The Oswego harbor is maintained by the USCOE and a series of samples were collected and analyzed by the Corps on May 2, 1987. A summary of these results are given. Sample locations are given in Figure 7. Selected results are shown in Table 5.

The USCOE also performed triplicate 96 hour acute toxicity experiments exposing <u>Hexagenia limbata</u> (sediment burrowing invertebrate), <u>Daphnia magna</u> (water column invertebrate), and <u>Pimephales promelas</u> (fish) to sediments. Using Duncan's analysis of variance procedure, the USCOE data were analyzed for similarity in toxicity. Figure 8 presents results of the analysis. Duncan's test examines all comparisons for a given species and shows groups of sediment samples associated with indistinguishable mortality rates.

All three experiments show that sediment station 12 produced significatly higher mortalities than the control. Analyses for bulk metals, bulk organic contaminants, and elutriate metals failed to distinguish sample 12 from the others.

NYSDEC obtained a single short core from Oswego Habor (see Figure 7). Bulk chemical concentrations, like those of USCOE, were low. Data appear in Appendix A. Due to local concerns, the Priority Pollutant pesticides were also analyzed in the NYSDEC Oswego samples. DDT and its metabolites were detected in all samples but co-elution with PCBs, quantified in all samples, prevented quantification of the DDTs. Most substances show a slight increased concentration at the bottom of the core.

Black River

The Black River drains the Tug Hill plateau and the western Adirondacks. Industrial activities in its basin are largely confined to paper making and hydroelectric generation. The City of Watertown discharges treated effluents to the Black. Black River empties into Black River Bay and then into eastern Lake Ontario.

A synoptic survey of Lake Ontario volatile halocarbons (Kaiser, Comba, and Huneault, 1983) was conducted in November 16-22, 1981. By ranking the observations (ties given equal weight) and "T" (trace) and "ND" (non-detect) observations given penultimate and ultimate ranks) and summing the ranks for each site, the disparate concentrations from 13 substances were coalesced into a single value. The top ranking sites (the top five percent) are off the Welland canal, immediately outside Hamilton Harbour, off New York midway between the Niagara River and Rochester, and in Black River Bay. The Black River Bay site had particularly high ranks for trichloroethylene, 1,1dichloroethylene, 1,2-dichloropropane, dibromomethane, and tetrachloroethylene. More recent work (Biberhofer and Stevens, 1987) has shown Black River Bay total PCB concentrations second only to the mouth of Hamilton Harbour (1.92 ng/L for Black River Bay and 3.1 ng/L for Hamilton Harbour mouth).

There are no easy explanations for elevated chemical concentrations in the Black River. However, several considerations may apply. The numerous hydroelectric and paper plants in the drainage have the potential for release of PCBs although none has been documented. Chlorination of humic waters may account for some of the observed halocarbons. And lastly, the relatively protected Black River Bay may contribute to slower dilution rates than those off the Niagara, Hamilton, or other possible contaminant sources.

NYSDEC took three cores ranging in length from 17 to 20 inches in length from a quiescent area upstream of the last dam at Dexter, New York. Locations of the samples are given in Figure 9. Figure 10 shows zinc concentrations in the three cores. Results are displayed in Appendix A.

Comparison Between Sites

G.

Figures 11, 12, and 13 display the depth averaged concentrations from NYSDEC cores at Olcott, Genesee River, Oswego Harbor, and Black River for zinc, lead, and copper. The EPA guidelines are indicated as parallel vertical lines. These show Genesee River cores containing the maxima but high concentrations For several substances are also seen in Black River samples. concentrations reported by NYSDEC were lower in lower Eighteen Mile Creek cores than those shown by USCOE and EPA. This may be due to sample position, sample time, sample collection procedures, or laboratory methods. Comparison between NYSDEC and other studies on the Genesee and Oswego do not show similar patterns. However, better knowlege of inter- and intralaboratory variability is needed to evaluate sites visited by multiple investigators. The contaminant peak in the top section of the Olcott Bar core could be explained as a consequence of recent breakthrough where the highly contaminated upper river material is just now appearing in the lower river. This thin surface layer might be more efficiently sampled with the methods used by EPA and USCOE. It may also be easily removed during storms or dredging. Figure 14 displays total organic carbon (TOC-1) as measured by persulfate and UV light digestion. TOC-1 profiles show that the Black and Oswego Rivers had the highest concentrations. Black River cores were taken behind a dam, the others pictured in Figures 11 to 14 were in areas more likely to be influenced by Lake Ontario. This may account for the higher concentrations. However the most exposed site, Oswego Harbor, also showed relatively high TOC-1 concentrations near the surface. Further sediment sampling should be undertaken to determine the source of Black River sediment metals. A geological explanation should be considered.

One of the barriers to developing sediment criteria has been the problem of normalizing concentrations from different sediments. Because of their matrix disparities, bulk concentrations have different significances. Highly organic or fine grained sediments have a greater capacity for holding contaminants than do coarser sediments. Correlations were calculated between each of the three sediment quality parameters (%TVS, total organic carbon by combustion, and total organic carbon by persulfate digestion) and bulk zinc for all samples, lower Eighteenmile samples, Black River samples, and Genesee River samples. Because of the small sample size, separate calculations for Oswego Harbor were not undertaken. The correlation coefficients were converted to z scores following the method of Fisher (taken from Steel and Torrie, 1960) and the lower bound of the confidence interval was calculated at the .01 level based on $s_z = (1/(n-3))^{.5}$. Table 6 displays the correlations and indicates which are statistically significant. Total volatile solids and persulfate TOC yield higher correlations than the conventional combustion TOC. TVS and TOC-1 may be more descriptive of relevant sediment characteristics than the combustion TOC.

TABLE 6

CORRELATION MATRIX FOR SEDIMENT QUALITY PARAMETERS AND ZINC r significantly > 0 indicated by *

n =		Lower Eighteenm. 30	Ck. Black R. 18	Genesee R. 34
TOC1 vs TOC2 TOC1 vs TVS TOC2 vs TVS TOC1 vs Zn TOC2 vs Zn TVS vs Zn	.63* .70* .75* .45* .17 .42*	.34 .42* .40* .37 .11 .03	.47 .62* .47 .62* .54* .33	.71* .77* .69* .58* .09 .59*
	organic	carbon by	persulfate dige conventional co	

Conclusions

Results of observations from upper Eighteenmile Creek point to the importance of adequately understanding background sources of target substances. While we do not expect to find natural sources of PCBs or mirex, we should be prepared to see metals and possibly PAHs. The Genesee River cores point to short distance depositional irregularities. Just as surface grab samples are subject to highly significant short distance differences, so too are cores. Acute toxicity results from Oswego harbor shows some similarities but also the difficulty in interpretation. Conclusions from biological testing are highly dependent on the organism and effect studied. Sediment characteristic parameters are important in understanding contaminant relations but again, problems arise in choosing the best characteristics. It appears that the relatively mild persulfate digestion may be a more descriptive characteristic than the more thorough combustion TOC usually employed.

Site Specific Conclusions

Eighteenmile Creek was found to have very high sediment metal concentrations (relative to values observed elsewhere in New York State and in other Great Lakes harbors) behind the two power dams. Background sources may be significant but the majority of the load appears to originate from activities within the watershed. Possible breakthrough to Olcott harbor was found by NYSDEC, EPA, and USCOE data.

The lower Genesee sediments had the highest river mouth sediment metal concentrations. The majority of the load seems to originate from discharges to the lower river.

Metal concentrations in Oswego harbor are low relative to other New York and Great Lakes harbor sediment concentrations. Biological experiments show that sites in the western harbor are more toxic than laboratory controls and, in some species, more toxic than sediments from the dredged spoil open lake dump site.

Black River sediments were not collected in the mouth but samples taken behind the last dam show elevated metal concentrations. The extent of background contribution is not known and should be assessed.

		COM	Julio	0110	U L <u>11</u>	•	10400	1.01		1010				
station	12	14	13	11	15	6	16	; ;	17	5	3	4	C	
mean	10	9	8.3	8	6.7	6 6.3	6.3	6	. 3	4.3	4	3	1.7	7
group														
A														
в														
C														
D														
E														
G														
		Co	mpari	sons	of	<u>D.</u> ma	agna	mor	tali	ities				
station	12	11	15	1	.7	17	3	14	4	5	6	С	13	
station mean	8	7.7	5.7	5.	3 4	.7 4	1.3	4	4	3.7	3	3	3	
group														
A														
В														_
							-							
		Comp	Daris	ons	of <u>P</u>	. pro	mela	s mo	orta	litie	es			
station	12	11	6	3	4	1	5 3	14	5	16		17	13	C
mean						7 2								
group														
A														
в														

Figure 8. Similarities between Oswego harbor sediments based on toxicity to <u>H</u>. <u>Limbata</u>, <u>D</u>. <u>magna</u>, and <u>P</u>. <u>promelas</u>. Data: USCOE, 1987.

Comparisons of <u>H</u>. <u>limbata</u> mortalities

TABLE 2

EIGHTEENMILE CREEK SEDIMENTS RESULTS USCOE 1987; Kizlauskas, Rockwell, and Claff, 1981

sample	As	Ba	Cđ	Cr	Cu	Pb	Hg	Ni	Sn	Zn	Fe
EPA - 8/3	80/19	81									
1 4 3 2	NA NA NA NA	88 290 330 44	0.9 0.4 0.3 BDL	30 60 88 15	49 110 130 13	43 230 290 BDL	BDL 1.9 3.0 BDL	37 25 32 28	BDL 13 11 BDL	190 320 350 66	16000 19000 21000 16000
USCOE - e	5/5-1	987									
ref. 1 2 3 3 B 4 5 6	74667422	42 90 50 85 75 54 15 15	1 0.5 1 2 2 1 2 1	24 17 40 87 79 17 8 4	26 26 48 140 150 50 18 9	35 38 89 200 200 73 20 5	2.5 0.17 0.78 0.59 0.78 0.82 0.05 0.03	22 24 40 110 110 17 14 8	NA NA NA NA NA NA	150 150 330 920 940 200 100 44	12200 14000 11000 13000 14500 8300 6900 5700
BDL - limit. NA - 1				tati	vely	ident	ified	but	belo	ow de	tection

TABLE 5

.

()

USCOE BULK SEDIMENT CONTAMINANT RESULTS FROM OSWEGO HARBOR (all results in mg/kg)

sample	As	Ba	Cđ	Cr	Cu	Pb	Hg	Ni	Zn
2	2	130	0.5	7	16	110	0.79	8	170
2 3	3	41	1	6	24	26	0.94	10	63
4	2	26	0.5	6	12	13	0.47	8	38
5	3	38	0.5	8	18	20	0.46	11	57
5 8 9	1	8	<.4	2	2	1	0.51	5	12
9	2	29	0.5	4	9	9	0.11	7	33
10	1	14	0.5	5	5	3	0.04	5	17
11	4	40	1	8	21	19	0.18	11	59
12	3	27	0.5	6	11	6	0.79	9	29
13	5	46	1	10	24	11	0.47	10	49
14	3	14	0.5	6	10	2	0.09	6	24
15	2	14	<.5	3	6	1	0.03	4	18
15B	2	17	<.4	3	8	<1	0.03	5	17
16	2	19	0.5	4	10	6	0.09	6	33
17	3	24	1	5	12	8	<.09	8	37
17B	3	24	1	6	9	7	<.09	6	34

TABLE 4

GENESEE RIVER SEDIMENT METAL CONCENTRATIONS Monroe County (1986) and Kizlauslas, Rockwell and Claff (1984) (all concentrations in mg/kg)

sample	As	Be	Cđ	Cr	Cu	Pb	Hg	Ni	Ag	Zn		
5/16/84 lower turnir	-	22	1.27			121						
basin	13	<.7	<.7	22	32	8	<.07	59	9.7	345		
upper turnir basin		<.7	4	19	38	9.7	<.07	47	10	143		
8/3/84 off Riverside Cemetary												
	19	.6	4.8	24	40	49	.56	37	20	187		
upstream of.		-										
Kodak downstream o		<.5	<.7	10	16	15	<.1	16	1.1	57		
Kodak	12	<.5	2.9	21	25	41	.15	29	24	112		
KOD (top of core)	12	.81	27	37	46	69	.89	41	27	440		
KOD (bottom												
core)	16	<.5	6.5	23	32	41	.47	35	12	194		
EPA												
(3	arseni	c and	bery	llium	were	not	repor	ted by	Y EPA)			
5/3/81	PCB	Ba	Cđ	Cr	Cu	Pb	Hg	Ni	Ag	Zn		
l	.04	82	1.0	20	30	24	.1	25	4.8	100		
2	.121	100	4.1	24			.3			170		
3	.72	410	29	65		250	.5			780		
3B	NA	140	6.5	38		170	.3					
4	.077	86	2.3	19	28	31	.4					
5	.052	32	ND	11	15	15	ND	16	2.1			
6	.084	45	0.5	14	27		.1			80		
7	.078	64	4.2		28		.1			95		
8	.31	240	9.1	37	73	130	. 4	24	30	220		
9	.043	48	0.9	13	21		.2	18	4.7	76		
10	.07	86	3.1				.2			140		
11	.043	49	0.6				ND	17	2.7			
12	.053	30	0.4	11	17	31	.2	14	0.4	55		
14	.031	72	1.5	17	25	27	.2	21	6.6	99		
NA - not a ND - not a			the	repli	cate	sampl	e.					

APPENDIX A

All analyses were performed at the NYSDOH Wadsworth Center for Laboratories and Research.

- SL sample lost
- NA not analyzed
- SU suspicious result
- UI unknown interference
- EE estimated result

Through a laboratory error, samples were placed in plastic containers befordanalysis for organics. Plasticizers from the containers may have contaminated the samples and introduced interferences.

REFERENCES

Ames, B.N., J. McCann, and E. Yamasaki, 1975. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian microsome mutagenicity test. <u>Mutat. Res.</u> 31:347.

Biberhofer, J. and R.J.J. Stevens. 1987. <u>Organochlorine Con-</u> <u>taminants in Ambient Waters of Lake Ontario</u>. Env. Can., IWD Scientific Series No. 159. 11p.

Black, J, H. Fox, P. Black, and F. Bock. 1985. Carcinogenic effects of river sediments. In <u>Water Chlorination Chemistry: Environmental Impacts and Health Effects</u> Vol V. Eds. R.L. Jolley, R.J. Bull, W.P. Davis, S. Katz, M.H. Roberts Jr., and V.A. Jacobs. Lewis Publishers, Chelsea, Michigan. pp. 415-427.

Bulich, A.A., 1984. Microtox-a bacterial toxicity test with general environmental applications. In: <u>Toxicity Screening Proce</u><u>dures Using Bacterial</u> <u>Systems</u> D. Lin and B.J. Dutka, eds. Marcel Dekker, New York. pp. 55-64.

Kaiser, K.L.E., M.E. Comba, and H. Huneault. 1983. Volatile halocarbon contamination in the Niagara River and in Lake Ontario. J. Great Lakes Res. 9(2):212-223.

Kizlauskas, A.G., D.C. Rockwell, and R.E. Claff. 1984. <u>Great</u> Lakes <u>National Program</u> <u>Office Harbor Sediment Program</u>, <u>Lake On-</u> <u>tario</u> <u>1981:</u> <u>Rochester</u>, <u>New York</u>; <u>Oswego</u>, <u>New York</u>; <u>Olcott</u>, <u>New</u> <u>York</u> USEPA, GLNPO, 536 S. Clark Street, Chicago, Il.

Litten, S. 1987. <u>Niagara River Area Sediments: Results of the</u> <u>Niagara River Implementation Plan Sediment Study and the Buffalo</u> <u>River Sediment Survey</u>. New York State Department of Environmental Conservation, Albany, New York.

Monroe County Department of Health, Environmental Health Laboratory. 1986. <u>Genesee River Sediment Toxics Survey 205(j)</u>.

Mount, D.I. and T.J. Norberg. 1984. A seven-day life-cycle cladoceran test. Environmental Toxicology and Chemistry 3:425-434.

Mudroch, A. 1983. Distribution of major elements and mertals in sediment cores from the western basin of Lake Ontario. <u>J. Great</u> Lakes Res. 9(2):125-133.

Nebeker, A.V., M.A. Cairns, J.H. Gakstatter, K.W. Malug, and G.S. Schuytema. 1984. Biological methods for determining toxicity of contaminated freshwater sediments to invertebrates. <u>Environmental Toxicology and Chemistry</u> 3:617-630.

Ross, P.E., V. Jarry, and H. Sloterdijk. 1987. A rapid bioassay using the green alga <u>Selenastrum capricornutum</u> to screen for toxicity in St. Lawrence River sediment elutriates. <u>American</u> <u>Society for Testing Materials STP No. 988</u>. 1.

Steel, R.G.D. and J.H. Torrie. 1960. <u>Principles and Prodedures of</u> <u>Statistics</u> McGraw-Hill Book Co., Onc. New York.

Zarba, C.S. 1988. Status of the U.S. EPA's sediment quality criteria development effort. In <u>Chemical and Biological Charac-</u> <u>terization of Sludges, Sediments, Dredge Spoils, and Drilling</u> <u>Muds</u> ASTM STP 976. J.J. Lichtenberg, J.A. Winter, C.I. Weber, and L. Fradkin, Eds. American Society for Testing and Materials, Philadelphia, pp. 13-17.

Figure 2. Schematic view of coring equipment.

N

Lake Ontario

6

Figure 6. Zinc concentrations in three Genesee River cores.

R

:

1.5

		Com	pariso	ons of	<u>H. 1</u>	imbat	a mo:	rtali	ities	5			
station mean group	12 10	14 9	13 1 8.3	8 6.	6 7 6.	1 3 6.	6 3 6	17 .3 4	5 1.3	3 4	4 3	с 1.7	7
A B C D E G													
Ũ		Co	mpari	sons d	of <u>D</u> .	magna	mor	talit	ties				
station mean group	12 8	11 7.7	15 5.7	17 5.3	17 4.7	3 4.3	14 4	4 4 :	5 3.7	6 3	C 3	13 3	
A B		Comp	ariso	ons of	<u>P. p</u>	romel	as mo	ortal	itie	s			-
station mean group					4 2.7								
A B													

.6

(1)

Figure 8. Similarities between Oswego harbor sediments based on toxicity to <u>H</u>. <u>Limbata</u>, <u>D</u>. <u>magna</u>, and <u>P</u>. <u>promelas</u>. Data: USCOE, 1987.

Figure 9. NYSDEC sampling sites on the Black River at Dexter.

í,

1

:)

Figure 12. Mean lead concentrations and EPA guidelines.

A '

Figure 13. Mean copper concentrations and EPA guidelines.

-307 concentration in mg/kg

-25-

EIGHTEENMILE CREEK SEDIMENTE

all concentrations in mg/kg

SITE	de	oth	ka froz	eouth	ZTVS	T0C-1	T0C-2	AS	PB	HG	SE
	()		10 11 00	dyetti	arre	100 1					2.22
Rt. 104 BRIDSE CONTROL SAMPL		the real									
50 FT DOWNSTREAM		GRAB		10.01	7	NA	17600	3.3	34	0.11	4.5
50 FT UPSTREAK	NYSDEC 11	BRAB		10.01		NA	12800				4.5
	NYSDEC 10			10.01	9	NA	21300				<.5
AT RT. 104 BRIDGE	NYSDEC 9	ERAB		10.01			23000	8.3			(.5
R: III .VI ENIDOL		unne.					20000	210	210		
TEST SAMPLES											
CLINTON ST.	NVSDEC 8	PONAR		13.66	9	5560	9400	4.1	1330	1.8	<.5
CLINTON ST. (reanalysis)				13.66		NA	NA	4.7	1320		(.5
	NYSDEC 7			12.57	14	18800	72000	4.9	1120		(.5
		0-7		5.1		9190	12400	12.9	4760		0.9
NEWFANE DAM. EAST	NYSDEC 6	7-13.5		5.1	18	10300	12700	12.6			0.8
BURT DAM, WEST	NVSDEC 5	0-5		2.01		15900	27800	7.5			0.6
	NYSDEC 5					13100		7.4			0.8
BURT DAM. WEST	NYSDEC 5	10-15				11500	32500	10.2	1450	0.7	
	NYSDEC 5	15-20			25	18000		11.2	3600	2.2	1
BURT DAM. WEST	NYSDEC 5	20-25		2.01		11900		10.7		1.6	
BURT DAM, CENTER	NYSDEC 4	0-5						6.3		0.5	
BURT DAM. CENTER						8770	19700			0.5	
	NYSDEC 3					11600	25600	6.3	741	0.6	<.5
PURT DAM. EAST						12200	13500			0.6	
	NYSDEC 3					9410	19200		2280	1.1	0.9
UPSTREAM OF RT. 18 BRIDGE						5560	27500		100	<.04	<.5
	NYSDEC 2						23400		30	<.04	<.5
	NYSDEC 2						19300		20	<.04	<.5
	NYSDEC 2						39100	1.7	16	<.04	<.5
	NYSDEC 2						13600	1.6	4	4.04	4.5
	NYSDEC 2					3150	22400	1.8		4.04	<.5
	NYSDEC 2						25100	1		<.04	<.5
UPSTREAM OF RT. 18 BRIDGE	NYSDEC 2	14-16		0.52	7	2530	22500	1.2	3.5	<.04	<.5
UPSTREAM OF RT. 18 BRIDGE	NYSDEC 2	16-18		0.52	7	1830	27900	1.2	3.2	<.04	<.5
	NYSDEC 2	18-20	<u>ੈ</u>	0.52	8		27100	1.8	3.3	<.04	<.5
UPSTREAM OF RT. 18 BRIDGE	NYSDEC 2	20-22		0.52	10	5840	34500	1.4	13.5	<.04	<.5
UPSTREAM OF RT. 18 BRIDGE	NYSDEC 2	22-24		0.52	10	2830	23200	1.1	3.2	<.04	<.5
UPSTREAM OF RT. 18 BRIDGE	NYSDEC 2	24-26		0.52	9	2540	30000	<1	2.9	<.04	<.5
UPSTREAM OF RT. 18 BRIDGE	NYSDEC 2	26-28		0.52	12	3280	41200	<1	3.1	<.04	<.5
UPSTREAM OF RT. 18 BRIDGE	NYSDEC 2	28-30		0.52	13	3090	42600	<1	3.3	0.05	<.5
OLCOTT BAR	NYSDEC 1	0-2		0.2	8	6560	39700	1.8	4	<.04	<.5
OLCOTT BAR	NYSDEC 1	2-4		0.2	10	4580	36300	1.5	3.6	<.04	<.5
OLCOTT BAR	NYSDEC 1	4-6		0.2	9	6910	49300	2	3.6	<.04	<.5
OLCOTT BAR	NYSDEC 1	6-8		0.2	9	5320	50000	1.9	3.2	<.04	<.5
OLCOTT BAR	NYSDEC 1	8-10		0.2	15	5430	45300	1.2	3.4	<.04	<.5
OLCOTT BAR	NYSDEC 1	10-12		0.2	12	6700	39500	2.2	3.4	<.04	<.5
OLCOTT BAR	NYSDEC 1	12-14		0.2	12	8010	52800	1.7	3.4	<.04	<.5
OLCOTT BAR	NYSDEC 1	14-16		0.2			30100	1.2	3.3	<.04	
OLCOTT BAR	NYSDEC 1	16-18		0.2			24600	1.8	3.6	(.04	
OLCOTT BAR	NYSDEC 1	18-20		0.2			18000	1.7	3.6	<.04	
- OLCOTT BAR	NYSDEC 1	20-22		0.2		5190	98800	1.3	3.4	4.04	
OLCOTT BAR	NYSDEC 1	22-24		0.2		4470	20400	1.3	3.6		
OLCOTT BAR	NYSDEC 1	24-26		0.2		6650	34200	1.2	3.5		
OLCOTT BAR	NYSDEC 1	26-28		0.2		5060	22200	1.8	3.4		
OLCOTT BAR	NYSDEC 1	28-30		0.2			18500	2			
	ALANCA 1	20 00						-			

€

EIGHTEENMILE CREEK SEDIMENTS (cont.) all concentrations in mg/kg

. . .

· · · · · · · · · · · ·

Luches) WTSDEC 12 658 2. (4 159 (2 7.2 20 23 2010 443 28 57 122 37 175 (8 WTSDEC 10 658 2.3 (4 164 (2 11 20) 13 31900 1100 32 55 121 35 544 (6 WTSDEC 10 658 2.3 (4 155 (2 15 34 142 3700 1100 32 55 121 35 544 (6 WTSDEC 19 658 2.3 (4 155 (2 15 34 142 3700 1100 32 55 121 35 544 (6 WTSDEC 1 7 548 1.6 (4 150 2.9 5.3 91 405 2460 802 50 108 73 23 790 8 WTSDEC 1 7 548 1.6 (4 150 2.9 5.3 91 405 2460 802 50 108 73 23 790 8 WTSDEC 1 7 548 1.6 (4 153 (2 5.8 329 718 2700 318 59 76 46 38 25 100 12 WTSDEC 5 0-5 10 2.9 (4 320 3.7 28 57 18 2700 350 453 885 137 237 101 21200 114 WTSDEC 5 0-5 2.9 (4 320 3.7 28 57 18 2700 350 453 885 137 237 101 2120 114 WTSDEC 5 0-5 2.9 (4 322 5.7 28 319 2260 3300 453 885 137 237 101 2120 114 WTSDEC 5 0-5 2.9 (4 322 5.7 12 271 108 200 3300 453 885 137 237 119 78 33 00 40 WTSDEC 5 0-5 2.9 (4 320 3.7 128 130 226 4300 374 458 822 100 3370 48 WTSDEC 5 0-5 2.9 (4 322 5.7 12 21 156 4810 700 528 445 92 100 1330 40 WTSDEC 5 0-5 2.9 (4 320 3.7 12 21 180 200 3300 475 885 137 237 119 73 830 40 WTSDEC 5 0-5 2.9 (4 320 3.7 12 21 128 208 4700 528 470 81 22 10 3320 98 WTSDEC 5 0-5 2.9 (4 320 3.7 12 21 180 28 422 4450 80 00 231 124 197 46 2150 110 WTSDEC 5 0-5 2.8 (4 395 4 22 910 176 450 337 479 158 247 108 1380 110 WTSDEC 5 0-5 2.8 (4 395 2 21 12 21 180 4550 476 458 133 120 48 41 120 144 WTSDEC 4 0-5 3.1 (4 315 2.2 15 162 316 422 4500 800 231 124 197 46 2150 17 WTSDEC 5 0-5 2.8 (4 304 3 21 34 126 1430 1500 373 27 23 150 45 116 39 WTSDEC 1 0-12 2.7 (4 320 2.7 15 12 2700 328 27 27 23 110 41 81 (6 WTSDEC 2 0+2 1.9 (4 117 (2 8.5 25 11 22800 371 27 23 159 42 75 (8 WTSDEC 1 0-14 2.9 (4 117 (2 8.5 25 11 22800 231 22 94 23 156 33 64 110 WTSDEC 2 0+2 1.9 (4 117 (2 8.5 25 11 22800 231 22 24 23 156 33 64 16 WTSDEC 1 0+14 2.9 (4 117 (2 8.7 29 12 2300 232 24 20 23 33 8 60 (8 WTSDEC 1 0+14 1.9 (4 117 (2 8.7 29 12 2300 230 28 27 24 139 37 56 (8 WTSDEC 1 0+14 11, 7 (4 117 (2 8.7 19 22 12 2400 243 24 24 (20 153 33 64 68 (8 WTSDEC 1 0+14 14 1, 9 (4 135 (2 8.7 19 7 11 22 1200 55 30 255 126 (11 33 77 68		depth	BE	AS	BA	CD	CO	CR	CU	FE	MN	NI	SR	TI	VN	ZN	HO	
NYSBEC 12 6BAB 2 (4 159 (2 7,2 20 23 28010 443 28 57 122 37 175 (8) NYSBEC 10 5ABB 2.3 (4 166 (2 6.3 17 12 23 28010 28 20 19 43 95 (6) NYSBEC 10 5ABB 2.3 (4 155 (2 6.3 17 28 2360 282 23 318 80 30 170 (8) NYSBEC 6 PDMAR 1.6 (4 150 2.9 5.3 91 605 22600 802 50 108 73 23 790 8 NYSBEC 7 5ABB 1.4 158 127 170 100 236 530 108 730 107 133 450 173 131 530 470 153 336 40 1730 133 130 130 <td>CONTOOL CANOL</td> <td>(inches)</td> <td></td>	CONTOOL CANOL	(inches)																
VYSDEC 11 BAB 2.3 (4 16.4 (2 11 20 13 3100 20 30 170 (8) VYSDEC 10 BAB 1.7 (4 205 (2 6.3 117 28 233 30 170 (8) VYSDEC 10 BAB 2.3 (4 155 2 15 31 1100 32 25 121 36 34 (8) VYSDEC 8 PDMAR 1.4 (4 150 2.9 5.3 91 405 264.60 B02 50 108 73 68 74.7 76 8 770 8 770 8 770 76 66 38 2700 12 770 8 171 710 220 101 1200 116 VYSDEC 6 0-7 2.4 325 3.9 28 371 163 44700 528 177 86 171 170 18																		
VYSIEC 10 EAG 1.7 (4 205 (2 6.1 7 20 20 20 20 30 10 10 30 10 10 30 10 10 30 10 10 10 10									23	28010	443	28	57	122	37	175	<8	
WYSBEC 9 BAB 2.3 (4 156 (2 15 34 112 35700 1100 32 55 121 35 544 (8) MYSBEC 8 POMAR 1.6 (4 150 2.9 5.3 91 405 28400 802 50 109 73 23 790 8 MYSBEC 7 FBAB 1.8 (4 108 (2 5.8 329 718 2700 373 23 790 8 MYSBEC 6 -7 1.3.5 2.1 (4 137 12 1100 236 510 137 233 101 112 1101 130 110 130 110 120 111 MYSBEC 5 0-5 2.9 (4 325 3.7 29 371 816 4700 589 323 171 173 150 4130 80 130 130 1300 140 1300 130 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>13</td><td>31900</td><td></td><td>28</td><td>30</td><td>198</td><td>43</td><td>95</td><td><8</td><td></td></t<>									13	31900		28	30	198	43	95	<8	
TEST SAMPLES NUM NU				<4		<2	6.3	17	28	23600	282	23	33	80	30	770	<8	
NYSDEC 8 PONAR 1.6 (4) 150 2.9 5.3 91 405 26400 802 50 108 73 23 790 8 NYSDEC 8 PONAR 1.6 (4) 158 (2) 5.2 95 650 27400 867 49 107 108 24 833 (8) NYSDEC 6 -77 2.4 5 368 9,4 2570 37300 453 895 137 237 101 2100 116 NYSDEC 5 -51 2.9 (4) 320 3.4 27 311 550 4500 596 323 87 119 75 3100 40 NYSDEC 5 10-15 2.7 (4) 320 3.4 27 311 560 476 485 101 3300 40 320 96 332 97 158 113 40400 1205 97 74 130 100	NYSDEC 9	GRAB	2.3	<4	156	<2	15	34	142	38700	1100	32	55	121	36	564	<8	
NYSDEC 8 PONAR 1.6 (4) 150 2.9 5.3 91 405 26400 802 50 108 73 23 790 8 NYSDEC 8 PONAR 1.6 (4) 158 (2) 5.2 95 650 27400 867 49 107 108 24 833 (8) NYSDEC 6 -77 2.4 5 368 9,4 2570 37300 453 895 137 237 101 2100 116 NYSDEC 5 -51 2.9 (4) 320 3.4 27 311 550 4500 596 323 87 119 75 3100 40 NYSDEC 5 10-15 2.7 (4) 320 3.4 27 311 560 476 485 101 3300 40 320 96 332 97 158 113 40400 1205 97 74 130 100																		
NYSDEC B PONAR 1.5 4 155 C2 1.5 4.50 2.50 1.60 2.50 2.50 2.50 1.60 2.50 2.50 2.50 1.60 2.50 2.50 2.50 1.60 2.50 1.60 2.50 2.50 1.60 2.50 1.60 2.50 1.60 2.50 1.60 2.50 1.60 2.50 1.60 2.50 1.50 1.50 1.50 1.50 1.50 1.50 1.																		
WYSDEC 7 EARB 1.8 (4) 108 (2) 5.8 2.9 718 2.10 8.53 8.64 9.10 1.2 8.7 716 6.6 36 9.7 1.01 1.02 1.01 <th1.01< th=""> 1.01 1.01<!--</td--><td></td><td></td><td>1.6</td><td><4</td><td>150</td><td>2.9</td><td>5.3</td><td>91</td><td>605</td><td>26600</td><td>802</td><td>50</td><td>108</td><td>73</td><td>23</td><td>790</td><td>8</td><td></td></th1.01<>			1.6	<4	150	2.9	5.3	91	605	26600	802	50	108	73	23	790	8	
NYSBEC 6 0-7 2.4 5 168 9.4 25 119 2700 115 2700 115 2700 115 2700 116 2700 117 237 101 2100 116 NYSBEC 5 0-5 2.1 (4 117 12 27 108 2040 3360 453 897 1637 237 101 2130 40 NYSBEC 5 5-10 2.9 (4 325 6.7 31 560 4760 57 41 3300 453 897 137 237 101 173 3010 30 40 NYSBEC 5 5-10 2.7 (4 332 6.7 317 548 44500 779 158 41 109 1500 110 12000 110 NYSBEC 5 10-2.7 (4 332 2.8 2 1130 318 4100 120 44 1200 140 12100 16 114 179 42 150 114 117 141 114 189 <td></td> <td>PONAR</td> <td>1.6</td> <td>4</td> <td>158</td> <td><2</td> <td>5.2</td> <td>95</td> <td>650</td> <td>27600</td> <td>867</td> <td>49</td> <td>107</td> <td>108</td> <td>24</td> <td>833</td> <td>(8)</td> <td></td>		PONAR	1.6	4	158	<2	5.2	95	650	27600	867	49	107	108	24	833	(8)	
NYSDEC 6 7-13.5 2.1 (4) 137 12 27 108 200 3360 450 872 105		6RAB	1.8	<4	108	<2	5.8	329	718	27900	378	59	76	66	38	2700	12	
NYSBEC 5 7-13.5 2.1 4 187 12 27 1080 2060 33.60 450 822 106 37 6 19 78 33.00 40 NYSBEC 5 5-10 2.9 (4 320 3.4 27 31 550 4750 556 323 87 19 75 33.00 40 NYSBEC 5 10-15 2.7 (4 320 3.4 27 31.5 560 4700 528 445 72 109 1300 10 NYSBEC 5 20-25 2.8 (4 385 6 22 930 1760 4550 476 458 131 206 84 11200 44 NYSBEC 4 5-10 2.7 (4 305 2.2 12 116 4400 128 132 298 81.2 1700 8 1200 44 8 131 206 84 1200 140 131 116 141 131 116 141 16 141 141 1			2.4	5	368	9.4	25	1390	2750	39300	453	895	137	237	101	21200	116	
WYSBEC 5 5-10 2.9 (4) 320 3.4 27 331 540 47800 556 323 87 119 75 3500 400 NYSBEC 5 10-15 2.7 (4) 332 6.7 31 754 810 47800 556 323 87 119 75 3500 400 NYSBEC 5 10-15 2.7 (4) 332 6.7 31 754 810 47800 556 373 87 479 158 247 109 13800 110 NYSBEC 5 20-25 2.8 6.4 385 6 22 930 1760 48500 4750 152 152 516 132 99 81 62 1500 55 516 117 1700 8 8 84500 133 94 160 1500 555 55 10 1700 8 142 108 6550 111 1700 8 8 8 8 8 8 8 8 8 8		7-13.5	2.1	<4	187	12	27	1080	2060	33600	450	822	105	39	69			
NYSBEC 5 10-15 2.7 (4) 352 6.7 17 75 107 75 107 <th107< th=""> 107 <th107< th=""> <th< td=""><td></td><td>0-5</td><td>2.9</td><td><4</td><td>325</td><td>3.9</td><td>28</td><td>371</td><td>635</td><td>48500</td><td>592</td><td>377</td><td>86</td><td>191</td><td>78</td><td>3300</td><td>40</td><td></td></th<></th107<></th107<>		0-5	2.9	<4	325	3.9	28	371	635	48500	592	377	86	191	78	3300	40	
WYSBEC 5 15-20 2.6 (4) 359 9.7 17 160 160 1500 110 NYSBEC 5 20-23 2.6 (4) 357 6 22 930 174 979 158 247 109 15800 110 NYSBEC 4 0-5 2.6 (4) 315 2.2 151 162 316 44200 1050 90 89 226 74 1340 8 NYSBEC 3 0-5 2.8 (4) 316 (2) 181 339 40400 1050 90 89 226 74 1340 8 NYSBEC 3 5-10 2.7 (4) 304 32 1304 151 1450 100 160 90 822 24 100 16 170 16 226 74 1340 86 168 100 111 174 100 226 100 132 171 142 100 22 160 131 126 141 16 168 111 170 <td< td=""><td></td><td>5-10</td><td>2.9</td><td><4</td><td>320</td><td>3.4</td><td>27</td><td>331</td><td>560</td><td>47800</td><td>596</td><td>323</td><td>87</td><td>119</td><td>75</td><td>3010</td><td>30</td><td></td></td<>		5-10	2.9	<4	320	3.4	27	331	560	47800	596	323	87	119	75	3010	30	
NYEBEC 5 15-20 2.6 (4) 399 9.7 17 2160 2200 47000 397 479 158 247 109 13800 110 NYEBEC 5 20-25 2.8 (4) 385 6 22 930 1760 48500 476 455 131 206 64 11200 44 NYEBEC 4 0-53 3.1 (4) 315 2.2 181 339 40400 1260 132 99 81 62 1700 8 NYEBEC 3 0-55 2.8 (.4) 316 72 139 5100 553 520 117 142 109 6550 111 NYEBEC 3 10-16 2.9 (4) 119 (2) 70 324 302 2117 142 108 6550 111 NYEBEC 4 1.9 (4) 113 (2) 72 23 107 11 12 108 410 110 110 2170 31 221 146 13 110 <td< td=""><td>NYSDEC 5</td><td>10-15</td><td>2.7</td><td><4</td><td>352</td><td>6.7</td><td>31</td><td>754</td><td>810</td><td>47400</td><td>528</td><td>445</td><td>92</td><td>90</td><td>100</td><td>3320</td><td>98</td><td></td></td<>	NYSDEC 5	10-15	2.7	<4	352	6.7	31	754	810	47400	528	445	92	90	100	3320	98	
NYSBEC 5 20-25 2.8 (4) 385 6 2.2 930 1760 48500 476 458 131 206 64 11200 44 NYSBEC 4 0-5 3.1 (4) 315 2.2 15 162 316 44200 1050 70 89 726 74 1340 8 NYSBEC 3 0-5 2.8 (4) 316 (2) 180 339 44500 800 231 124 197 66 2150 17 NYSBEC 3 0-5 2.8 (4) 304 3 21 304 519 4550 713 318 110 97 66 2150 17 NYSBEC 2 0-2 1.7 (4) 96 (2) 2.5 10 25700 324 30 28 116 39 86 (8 NYSBEC 2 0-2 1.7 (4) 133 (2) 9.6 25 11 25000 311 27 23 160 35 81 (4) 3		15-20	2.6	<4	399	9.7	17	2160	2280	47000	397							
NYSDEC 4 0-5 3.1 (4) 315 2.2 15 162 316 44200 1050 90 89 226 74 1340 8 NYSDEC 4 5-10 2.7 (4) 320 2.8 20 181 339 40400 1260 800 231 122 197 64 216 216 24 20 181 339 40400 1260 800 231 124 197 64 215 01 127 97 81 62 1700 8 NYSDEC 3 10-16 2.8 (4) 403 9 24 1260 1430 5150 553 520 117 142 108 6570 111 VSDEC 2 0-2 1.9 (4) 196 (2 9.2 2500 237 27 23 167 42 75 (8 NYSDEC 2 10-12 1.7 (4) 107 (2 8.2 2.8 24000 284 23 155 35 61 (8 89 </td <td>NYSDEC 5</td> <td>20-25</td> <td>2.8</td> <td><4</td> <td>385</td> <td>6</td> <td>22</td> <td>930</td> <td>1760</td> <td>48500</td> <td>476</td> <td>458</td> <td>131</td> <td></td> <td></td> <td></td> <td>44</td> <td></td>	NYSDEC 5	20-25	2.8	<4	385	6	22	930	1760	48500	476	458	131				44	
NYSDEC 4 5-10 2.7 (4) 320 2.8 20 181 339 40400 1260 132 99 81 62 1700 8 NYSDEC 3 0-5 2.8 (.4) 316 (2) 182 58 422 44500 600 713 318 10 99 61 62 1400 22 246 23 NYSDEC 3 0-2 1.9 (4) 404 9 24 1260 1430 51500 563 520 117 142 108 6950 111 YSDEC 2 0-2 1.9 (4) 126 (2) 9.7 25 10 25700 328 27 147 40 75 (6) NYSDEC 2 4-6 1.9 (4) 126 (2) 9.7 25 11 26900 311 27 23 156 35 61 (8) 89 25 11 26900 310 28 27 147 40 75 (8) 89 2600 28		0-5	3.1	<4	315	2.2	15	162	316	44200	1050	90						
NYSDEC 3 0-5 2.8 (.4 316 (2 18 258 422 44500 800 231 124 197 65 2150 17 NYSDEC 3 5-10 2.8 (4 304 3 21 304 519 45600 713 318 110 97 65 2460 23 NYSDEC 3 10-16 2.9 (4 403 9 24 1260 1430 5100 533 520 117 142 108 646 68 NYSDEC 4 -6 1.9 (4 119 (2 9.2 25 10 25700 324 30 28 114 108 6450 111 86 870 111 860 211 27000 311 27 23 116 34 35 81 (8 870 700 310 28 21 64 35 81 (8 870 88 2480 264 24 20 213 34 59 68 8750 81 70 <td></td> <td>5-10</td> <td>2.7</td> <td><4</td> <td>320</td> <td>2.8</td> <td>20</td> <td>181</td> <td>339</td> <td>40400</td> <td>1260</td> <td>132</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		5-10	2.7	<4	320	2.8	20	181	339	40400	1260	132						
NYSDEC 3 5-10 2.8 (4 304 3 21 304 519 45600 713 318 110 99 62 2440 23 NYSDEC 3 10-16 2.9 (4 403 9 24 1260 1430 51500 532 510 170 11 142 108 6750 111 YSDEC 2 0-2 1.9 (4 96 (2 8.5 25 10 2700 324 30 28 116 39 86 68 NYSDEC 2 4-6 1.9 (4 113 (2 9.6 25 11 25000 311 27 23 150 353 24 20 133 2440 310 28 21 66 35 81 (8 NYSDEC 2 10-12 1.7 (4 107 (2 8.3 20 8.9 25000 288 24 20 133 34 59 (8 NYSDEC 2 14-16 (4 110 (2 9.2 23 12 <td< td=""><td>NYSDEC 3</td><td>0-5</td><td>2.8</td><td><.4</td><td>316</td><td><2</td><td>18</td><td>258</td><td>422</td><td>44500</td><td></td><td></td><td>124</td><td></td><td></td><td></td><td></td><td></td></td<>	NYSDEC 3	0-5	2.8	<.4	316	<2	18	258	422	44500			124					
NYSDEC 3 10-16 2.9 (4 403 9 24 1260 1430 51500 563 520 117 142 108 6750 111 YSDEC 2 0-2 1.9 (4 196 (2 8.5 25 10 25700 324 30 28 118 39 86 (8) NYSDEC 2 2-4 1.9 (4 119 (2 9.2 25 9.9 26800 337 27 23 107 41 81 (8) NYSDEC 2 4-6 1.9 (4 126 (2 9.3 25 12 27000 328 21 66 35 81 (8) NYSDEC 2 8-10 1.8 (4 105 (2 7.8 19 9 24800 283 24 20 213 34 59 (8) NYSDEC 2 14-16 1.7 (4 117 (2 8 22 9.3 25500 282 26 20 93 37 63 (8) <td>NYSDEC 3</td> <td>5-10</td> <td>2.8</td> <td><4</td> <td>304</td> <td>3</td> <td>21</td> <td>304</td> <td>519</td> <td>45600</td> <td></td> <td></td> <td>110</td> <td></td> <td></td> <td></td> <td></td> <td></td>	NYSDEC 3	5-10	2.8	<4	304	3	21	304	519	45600			110					
YSDEC 2 0-2 1.9 (4 96 (2 8.5 25 10 25700 324 30 28 116 39 86 (8 NYSDEC 2 2-4 1.9 (4 119 (2 9.2 25 9.9 26800 337 27 23 170 41 81 (8 NYSDEC 2 4-6 1.9 (4 126 (2 9.3 25 112 27000 328 27 27 147 40 75 (8 NYSDEC 2 6-8 1.9 (4 103 (2 8.9 23 13 25400 310 28 21 46 35 81 (8 NYSDEC 2 10-12 1.7 (4 107 (2 8.3 22 9.8 24 23 156 35 61 (8 NYSDEC 2 10-14 1.6 (4 117 (2 8.2 28.9 24 20 13 34 59 (8 80 255 22 13 34	NYSDEC 3	10-16	2.9	<4	403	9	24	1260	1430					3.5.4				
NYSDEC 2 2-4 1.9 (4 119 (2 9.2 25 9.9 26800 337 27 23 170 41 81 (8) NYSDEC 2 4-6 1.9 (4 126 (2 9.3 25 12 27000 328 27 27 147 40 75 (8) NYSDEC 2 6-8 1.9 (4 126 (2 9.4 25 11 2600 311 27 23 169 42 75 (8) NYSDEC 2 10-12 1.7 (4 107 (2 8.3 20 8.9 25000 298 24 23 135 35 61 (8) NYSDEC 2 12-14 1.6 (4 105 (2 7.8 19 9 24800 264 24 20 133 45 (8) (8) (2) 22 16 37 63 (8) (8) (2) 133 45 (8) (8) (8) (8) (8) (8) (8) (8) <td>YSDEC 2</td> <td>0-2</td> <td>1.9</td> <td><4</td> <td>96</td> <td>(2</td> <td>8.5</td> <td>25</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	YSDEC 2	0-2	1.9	<4	96	(2	8.5	25	10									
NYSDEC 2 4-6 1.9 (4 126 (2 9.3 25 12 27000 328 27 27 147 40 75 (8) NYSDEC 2 &-B 1.9 (4 133 (2 9.6 25 11 25000 311 27 23 169 42 75 (8) NYSDEC 2 B-10 1.8 (4 120 (2 8.9 23 13 25400 310 28 21 66 35 81 (8) NYSDEC 2 12-14 1.6 (4 105 (2 7.8 19 9 24800 283 24 20 133 34 59 (8) NYSDEC 2 14-15 1.7 (4 117 (2 8.2 8.8 2400 23 13 25400 301 27 21 33 36 (8) (8) 79 213 22 163 33 41 70 (8) 73 45 (8) (8) 103 26 (20 133	NYSDEC 2	2-4	1.9	<4	119	<2			9.9									
NYSDEC 2 b-B 1.9 (4 133 (2 9.6 25 11 26900 311 27 23 169 42 75 (8 NYSDEC 2 B-10 1.8 (4 120 (2 8.9 23 13 25400 310 28 21 66 35 B1 (8 NYSDEC 2 10-12 1.7 (4 107 (2 8.3 20 8.9 23 12 466 35 51 (8 NYSDEC 2 12-14 1.6 (4 105 (2 7.8 19 9 24800 283 24 20 213 34 59 (8 NYSDEC 2 14-16 1.7 (4 118 (2 8.3 22 9.3 25000 282 26 (20 93 37 63 (8 NYSDEC 2 16-18 1.7 (4 112 (2 9.2 23 12 27600 325 28 11 173 37 53 (8 NYSDEC 22-	NYSDEC 2	4-6	1.9	<4	126	<2												
NYSDEC 2 B-10 1.8 (4 120 (2 B.9 23 13 25400 310 28 21 66 35 B1 (B) NYSDEC 2 10-12 1.7 (4 107 (2 8.3 20 B.9 25000 298 24 23 156 35 61 (B) NYSDEC 2 12-14 1.6 (4 105 (2 7.8 19 9 24800 283 24 20 213 34 59 (B) NYSDEC 2 14-16 1.7 (4 118 (2 8.3 22 9.8 24800 283 24 20 213 34 59 (B) NYSDEC 2 14-16 1.7 (4 112 (2 9.2 23 12 26600 301 27 22 193 41 70 (B) NYSDEC 2 22-24 1.6 (4 97 2 9 23 12 27600 325 28 21 173 39 75 (B)	NYSDEC 2	6-8	1.9	<4														
NYSDEC 2 10-12 1.7 (4 107 (2 8.3 20 8.9 25000 298 24 23 156 35 61 (8) NYSDEC 2 12-14 1.6 (4 105 (2 7.8 19 9 24800 283 24 20 213 34 59 (8) NYSDEC 2 14-16 1.7 (4 117 (2 8 22 8.8 24800 284 24 20 153 38 60 (8) NYSDEC 2 14-18 1.7 (4 118 (2 8.2 20 23 12 2600 325 28 21 173 39 75 (8) NYSDEC 2 1.6 (4 125 (2 9 20 10 24400 290 26 (20 156 33 66 (8) NYSDEC 2 24-26 1.5 (4 103 (2 8.6 19 11 23400 284 26 (20 156 33 66	NYSDEC 2	8-10	1.8	<4														
NYSDEC 2 12-14 1.6 (4 105 (2 7.8 19 9 24800 283 24 20 213 34 59 (8) NYSDEC 2 14-16 1.7 (4 117 (2 8 22 8.8 24800 264 24 (20 153 38 60 (8) NYSDEC 2 16-18 1.7 (4 117 (2 8 22 9.3 25500 282 26 (20 93 37 63 (9) NYSDEC 2 16-20 1.8 (4 125 (2 9 23 12 26600 301 27 22 193 41 70 (8) NYSDEC 2 20-22 1.9 (4 121 (2 9 20 10 24400 290 26 (20 156 32 65 (8) NYSDEC 2 24-26 1.5 (4 103 (2 8.1 19 11 23400 283 26 (20 152 28 68 <td< td=""><td>NYSDEC 2</td><td>10-12</td><td>1.7</td><td><4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	NYSDEC 2	10-12	1.7	<4														
NYSDEC 2 14-16 1.7 (4 117 (2 B 22 B.B 24800 264 24 (20 153 38 60 (8 NYSDEC 2 16-18 1.7 (4 118 (2 B.3 22 9.3 25500 282 26 (20 93 37 63 (8 NYSDEC 2 18-20 1.8 (4 125 (2 9 23 12 26600 301 27 22 193 41 70 (8 NYSDEC 2 20-22 1.9 (4 121 (2 9.2 23 12 26600 301 27 22 193 41 70 (8 NYSDEC 2 22-24 1.6 (4 95 (2 8.3 19 9.8 23400 293 26 (20 152 28 68 (8 NYSDEC 2 26-28 1.5 (4 103 (2 8.6 19 11 23400 295 26 (20 152 28 68 (8	NYSDEC 2	12-14		(4														
NYSDEC 2 16-18 1.7 (4 118 (2 8.3 22 9.3 25500 282 26 (20 93 37 63 (8 NYSDEC 2 18-20 1.8 (4 125 (2 9 23 12 26600 301 27 22 193 41 70 (8 NYSDEC 2 20-22 1.9 (4 121 (2 9.2 23 12 26600 301 27 22 193 41 70 (8 NYSDEC 2 22-24 1.6 (4 99 (2 9 20 10 24400 290 26 (20 169 33 66 (8 NYSDEC 2 24-26 1.5 (4 95 (2 8.3 19 9.8 23400 283 26 (20 156 32 65 (8 NYSDEC 2 28-30 1.5 (4 103 (2 8.6 19 11 23400 284 26 (20 148 32 67 (8 NY	NYSDEC 2	14-16	1.7	<4														
NYSDEC 2 18-20 1.8 (4 125 (2 9 23 12 26600 301 27 22 13 41 70 (8 NYSDEC 2 20-22 1.9 (4 121 (2 9.2 23 12 2600 325 28 21 173 39 75 (8 NYSDEC 2 22-24 1.6 (4 97 (2 9 20 10 24400 290 26 (20 169 33 66 (8 NYSDEC 2 24-26 1.5 (4 95 (2 8.3 19 9.8 23400 295 26 (20 156 32 65 (8 NYSDEC 2 26-30 1.5 (4 103 (2 8.6 19 11 23400 284 26 (20 152 28 68 (8 NYSDEC 1 0-2 1.7 (4 82 (2 9.7 25 12 23300 301 29 24 189 40 81 (8 NYSDEC 1	NYSDEC 2	16-18	1.7	<4														
NYSDEC 2 20-22 1.9 (4 121 (2 9.2 23 12 27600 325 28 21 173 39 75 (8 NYSDEC 2 22-24 1.6 (4 99 (2 9 20 10 24400 290 26 (20 169 33 66 (8 NYSDEC 2 24-26 1.5 (4 95 (2 8.3 19 9.8 23400 283 26 (20 156 32 65 (8 NYSDEC 2 26-28 1.5 (4 100 (2 9 18 12 23400 283 26 (20 156 32 65 (8 NYSDEC 1 0-2 1.7 (4 82 (2 5.9 32 141 19900 177 22 (20 385 29 229 (8 NYSDEC 1 0-2 1.7 (4 82 (2 9.7 25 12 2300 301 29 24 139 40 81 (8 <td>NYSDEC 2</td> <td>18-20</td> <td>1.8</td> <td><4</td> <td>125</td> <td></td>	NYSDEC 2	18-20	1.8	<4	125													
NYSDEC 2 22-24 1.6 (4 99 (2 9 20 10 24400 290 26 (20) 165 33 66 (8) NYSDEC 2 24-26 1.5 (4 95 (2 8.3 19 9.8 23400 283 26 (20) 156 32 65 (8) NYSDEC 2 26-28 1.5 (4 100 (2 9 18 12 23400 295 26 (20) 155 (32) 65 (8) NYSDEC 1 0-2 1.7 (4 82 (2 5.9 32 141 19900 177 22 (20) 385 29 229 (8) NYSDEC 1 0-2 1.7 (4 82 (2 9 25 12 23300 301 29 24 139 40 81 (8) NYSDEC 1 2-4 1.9 (4 134 (2 9 25 12 2300 301 29 24 137 40 81 8	NYSDEC 2	20-22	1.9	<4	121		9.2									0.00		
NYSDEC 2 24-26 1.5 (4 95 (2 8.3 19 9.8 23400 283 26 (20 156 32 65 (8 NYSDEC 2 26-28 1.5 (4 100 (2 9 18 12 23400 295 26 (20 152 28 68 (8 NYSDEC 2 28-30 1.5 (4 103 (2 8.6 19 11 23400 284 26 (20 152 28 68 (8 NYSDEC 1 0-2 1.7 (4 82 (2 5.9 32 141 19900 177 22 (20 385 29 229 (8 NYSDEC 1 2-4 1.9 (4 134 (2 9 25 12 23300 301 29 24 180 42 80 (8 NYSDEC 1 4-6 2 (4 137 (2 9.6 24 12 26900 279 28 24 217 41 77 (8	NYSDEC 2	22-24	1.6	<4														
NYSDEC 2 26-28 1.5 (4 100 (2 9 18 12 23400 295 26 (20 152 28 68 (8 NYSDEC 2 28-30 1.5 (4 103 (2 8.6 19 11 23400 284 26 (20 152 28 68 (8 NYSDEC 1 0-2 1.7 (4 82 (2 5.9 32 141 19900 177 22 (20 385 29 229 (8 NYSDEC 1 2-4 1.9 (4 134 (2 9 25 12 23300 301 29 24 139 40 81 (8 NYSDEC 1 4-6 2 (4 136 (2 9.7 25 12 28100 293 29 24 180 42 80 (8 NYSDEC 1 6-8 2 (4 150 (2 11 26 13 27200 305 30 25 126 41 83 (8 <	NYSDEC 2	24-26		(4			8.3											
NYSDEC 2 28-30 1.5 (4 103 (2 8.6 19 11 23400 284 26 (20 148 32 67 (8 NYSDEC 1 0-2 1.7 (4 82 (2 5.9 32 141 19900 177 22 (20 385 29 229 (8 NYSDEC 1 2-4 1.9 (4 134 (2 9 25 12 23300 301 29 24 139 40 81 (8 NYSDEC 1 4-6 2 (4 136 (2 9.7 25 12 23300 301 29 24 180 42 80 (8 NYSDEC 1 4-6 2 (4 137 (2 9.6 24 12 26900 279 28 24 217 41 77 (8 NYSDEC 1 6-12 2 10 2 14 150 (2 11 26 13 27200 305 30 25 126 41 <t< td=""><td>NYSDEC 2</td><td>26-28</td><td>1.5</td><td><4</td><td>100</td><td></td><td>0.035</td><td>18</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	NYSDEC 2	26-28	1.5	<4	100		0.035	18										
NYSDEC 1 0-2 1.7 (4 82 (2 5.9 32 141 19900 177 22 (20 385 29 229 (8 NYSDEC 1 2-4 1.9 (4 134 (2 9 25 12 23300 301 29 24 139 40 81 (8 NYSDEC 1 4-6 2 (4 136 (2 9.7 25 12 23300 301 29 24 139 40 81 (8 NYSDEC 1 4-6 2 (4 135 (2 9.6 24 12 26900 279 28 24 217 41 77 (8 NYSDEC 1 8-10 2 (4 150 (2 11 26 13 27200 305 30 25 126 41 83 (8 NYSDEC 1 10-12 2 (4 154 (2 9.1 24 13 25700 291 27 25 188 41 79 (8	NYSDEC 2	28-30																
NYSDEC 1 2-4 1.9 (4 134 (2 9 25 12 23300 301 29 24 139 40 B1 (8) NYSDEC 1 4-6 2 (4 136 (2 9.7 25 12 23300 301 29 24 139 40 B1 (8) NYSDEC 1 6-8 2 (4 136 (2 9.7 25 12 28100 293 29 24 180 42 80 (8) NYSDEC 1 6-8 2 (4 137 (2 9.6 24 12 26900 279 28 24 217 41 77 (8) NYSDEC 1 8-10 2 (4 150 (2 11 26 13 27200 305 30 25 126 41 83 (8) NYSDEC 1 10-12 2 (4 154 (2 9.1 24 13 25700 291 27 25 188 41 79 (8) <td>NYSDEC 1</td> <td></td>	NYSDEC 1																	
NYSDEC 1 4-6 2 (4 136 (2 9.7 25 12 28100 293 29 24 180 42 80 (8 NYSDEC 1 6-8 2 (4 139 (2 9.6 24 12 26900 279 28 24 217 41 77 (8 NYSDEC 1 8-10 2 (4 150 (2 11 26 13 27200 305 30 25 126 41 83 (8 NYSDEC 1 10-12 2 (4 150 (2 11 26 13 27200 305 30 25 126 41 83 (8 NYSDEC 1 10-12 2 (4 154 (2 9.1 24 13 25700 291 27 25 188 41 79 (8 NYSDEC 1 14-16 1.7 (4 139 (2 7.9 21 12 23600 268 26 21 31 31 75 (8	WYSDEC 1	2-4																
NYSDEC 1 6-B 2 (4 137 (2 9.6 24 12 26900 279 28 24 217 41 77 (8 NYSDEC 1 B-10 2 (4 150 (2 11 26 13 27200 305 30 25 126 41 83 (8 NYSDEC 1 10-12 2 (4 154 (2 8.5 26 14 26700 295 28 25 218 43 82 (8 NYSDEC 1 12-14 1.9 (4 154 (2 9.1 24 13 25700 291 27 25 188 41 79 (8 NYSDEC 1 14-16 1.7 (4 139 (2 7.9 21 12 23600 268 26 21 31 31 75 (8 NYSDEC 1 16-18 1.8 (4 148 (2 10 26 12 24600 279 28 22 45 35 82 (8 <	NYSDEC 1	4-6																
NYSDEC 1 B-10 2 (4 150 (2 11 26 13 27200 305 30 25 126 41 83 (8 NYSDEC 1 10-12 2 (4 164 (2 8.5 26 14 26700 295 28 25 218 43 82 (8 NYSDEC 1 12-14 1.9 (4 154 (2 9.1 24 13 25700 291 27 25 188 41 79 (8 NYSDEC 1 14-16 1.7 (4 139 (2 7.9 21 12 23600 268 26 21 31 31 75 (8 NYSDEC 1 16-18 1.8 (4 148 (2 10 26 12 24600 279 28 22 45 35 82 (8 NYSDEC 1 18-20 1.9 (4 153 (2 8.2 25 13 26400 288 29 28 88 40 82 (8	NYSDEC 1																	
NYSDEC 1 10-12 2 (4 164 (2 8.5 26 14 26700 295 28 25 218 43 82 (8 NYSDEC 1 12-14 1.9 (4 154 (2 9.1 24 13 25700 291 27 25 188 41 79 (8 NYSDEC 1 14-16 1.7 (4 139 (2 7.9 21 12 23600 268 26 21 31 31 75 (8 NYSDEC 1 16-18 1.8 (4 148 (2 10 26 12 24600 279 28 22 45 35 82 (8 NYSDEC 1 18-20 1.9 (4 153 (2 8.2 25 13 26400 288 29 28 88 40 82 (8 NYSDEC 1 18-20 1.9 (4 153 (2 8.5 23 13 25200 285 27 25 158 38 79 (8 <td></td>																		
NYSDEC 1 12-14 1.9 (4 154 (2 9.1 24 13 25700 291 27 25 188 41 79 (8 NYSDEC 1 14-16 1.7 (4 139 (2 7.9 21 12 23600 268 26 21 31 31 75 (8 NYSDEC 1 16-18 1.8 (4 148 (2 10 26 12 24600 279 28 22 45 35 82 (8 NYSDEC 1 16-18 1.8 (4 148 (2 10 26 12 24600 279 28 22 45 35 82 (8 NYSDEC 1 18-20 1.9 (4 153 (2 8.2 25 13 26400 288 29 28 88 40 82 (8 NYSDEC 1 20-22 1.8 (4 138 (2 8.5 23 13 25200 285 27 25 158 38 79 (8 <td></td>																		
NYSDEC 1 14-16 1.7 (4 139 (2 7.9 21 12 23600 268 26 21 31 31 75 (8 NYSDEC 1 16-18 1.8 (4 148 (2 10 26 12 24600 279 28 22 45 35 82 (8 NYSDEC 1 18-20 1.9 (4 153 (2 8.2 25 13 26400 288 29 28 88 40 82 (8 NYSDEC 1 20-22 1.8 (4 138 (2 8.5 23 13 25200 285 27 25 158 38 79 (8 NYSDEC 1 22-24 1.8 (4 142 (2 8.8 23 13 24700 284 28 25 15 30 80 (8 NYSDEC 1 24-26 1.7 (4 131 (2 8.8 21 12 24000 265 26 22 186 34 76 (8 <td></td>																		
NYSDEC 1 16-18 1.8 <4																		
NYSDEC 1 18-20 1.9 (4 153 (2 8.2 25 13 26400 288 29 28 88 40 82 (8 NYSDEC 1 20-22 1.8 (4 138 (2 8.5 23 13 25200 285 27 25 158 38 79 (8 NYSDEC 1 22-24 1.8 (4 142 (2 8.8 23 13 24900 284 28 25 15 30 80 (8 NYSDEC 1 24-26 1.7 (4 131 (2 8.8 21 12 24000 265 26 22 186 34 76 (8 NYSDEC 1 24-26 1.7 (4 131 (2 8.8 21 12 24000 265 26 22 186 34 76 (8 NYSDEC 1 26-28 2 (4 162 (2 8.9 26 11 26600 280 28 23 198 44 86 (8 </td <td></td>																		
NYSDEC 1 20-22 1.8 (4 138 (2 8.5 23 13 25200 285 27 25 158 38 79 (8 NYSDEC 1 22-24 1.8 (4 142 (2 8.8 23 13 24900 284 28 25 15 30 80 (8 NYSDEC 1 24-26 1.7 (4 131 (2 8.8 21 12 24000 265 26 22 186 34 76 (8 NYSDEC 1 26-28 2 (4 162 (2 8.9 26 11 2600 280 28 23 198 44 86 (8																		
NYSDEC 1 22-24 1.8 <4 142 <2 8.8 23 13 24700 284 28 25 15 30 80 (8 NYSDEC 1 24-26 1.7 <4																		
NYSDEC 1 24-26 1.7 (4 131 (2 8.8 21 12 24000 265 26 22 186 34 76 (8 NYSDEC 1 26-28 2 (4 162 (2 8.9 26 11 26600 280 28 23 198 44 86 (8																		
NYSDEC 1 26-28 2 <4 162 <2 8.9 26 11 26600 280 28 23 198 44 86 <8																		
NTSUEL 1 28-30 2.1 (4 182 (2 8.9 28 11 27900 283 30 21 209 46 81 (8															44	86		
	ATSUEL 1	28-30	2.1	(4	182	<2	8.9	28	11	27900	283	30	21	209	46	81	<8	

EIGHTEENMILE CREEK SEDIMENTS (cont.) all concentrations in mg/kg

								Ar	roclors		
	depth	SB	SN	TH	AL	ł	1221	1016/		1254	1260
	(inches)					ł		1242			
CONTROL SAMPL						!					
NYSDEC 12	GRAB	<20	<20	<10	24500	1	NA	NA	NA	NA	NA
NYSDEC 11	6RAB	<20	<20	<10	25400	ł	NA	NA	NA	NA	NA
NYSDEC 10	5RAB	<20	<20	<10	20100	ł	NA	NA	NA	NA	NA
NYSDEC 9	GRAB	<20	<20	<10	23800	ł	<.001	<.001	<.001	<.001	<.001
						1					
TEST SAMPLES						ł					
NYSDEC 8	PONAR	<20	20	<10	9800	ł	SL	SL	SL	SL	SL
NYSDEC 8	PONAR	<20	54	<10	11700	!	NA	NA	NA	NA	NA
NYSDEC 7	GRAB	<20	108	<10	28700	ł	(.001	0.025	0.009	<.001	<.001
NYSDEC 6	0-7	<20	1100	<10	35800	ł	<.001	<.001	<.001	<.001	<.001
NYSDEC 6	7-13.5	<20	25	<10	29000	1	<.001	<.001	<.001	<.001	<.001
NYSDEC 5	0-5	<20	158	<10	42200	ł	<.001	<.001	<.001	<.001	<.001
NYSDEC 5	5-10	<20	118	<10	42300	1	<.001	<.001	<.001	<.001	<.001
NYSDEC 5	10-15	<20	142	<10	35000	ł	<.001	<.001	<.001	<.001	<.001
NYSDEC 5	15-20	<20	888	<10	40400	ł	<.001	<.001	<.001	<.001	<.001
NYSDEC 5	20-25	<20	568	<10	38500	ł	<.001	<.001	<.001	<.001	<.001
NYSDEC 4	0-5	<20	87	<10	45100	ł	<.001	<.001	<.001	<.001	<.001
NYSDEC 4	5-10	<20	33	<10	37600	ł	<.001	<.001	<.001	<.001	<.001
NYSDEC 3	0-5	<20	132	<10	37800	ł	<.001	<.001	<.001	<.001	<.001
YSDEC 3	5-10	<20	60	<10	36800	1	<.001	<.001	<.001	<.001	<.001
NYSDEC 3	10-16	<20	280	<10	36600	ł	<.001	<.001	<.001	<.001	<.001
NYSDEC 2	0-2	<20	<20	<10	25000	2	<.001	0.007	<.001	<.001	<.001
NYSDEC 2	2-4	<20	<20	<10	25900		<.001	0.005	<.001	<.001	<.001
NYSDEC 2	4-6	<20	<20	<10	25800		<.001	<.001	<.001	(.001	<.001
NYSDEC 2	6-8	<20	<20	<10	26700		<.001	<.001	<.001	<.001	<.001
NYSDEC 2	8-10	<20	<20	<10	23800		<.001	<.001	<.001	<.001	<.001
NYSDEC 2	10-12	<20	<20	<10	21700		<.001	<.001	<.001	<.001	<.001
NYSDEC 2	12-14	<20	<20	<10	20900		<.001	<.001	<.001	<.001	<.001
NYSDEC 2	14-16	<20	<20	<10	24200		<.001	<.001	<.001	<.001	<.001
NYSDEC 2	16-18	<20	<20	<10	24100		<.001		<.001	<.001	<.001
NYSDEC 2	18-20	<20	<20	<10	25400		<.001	<.001	<.001	<.001	<.001
NYSDEC 2	20-22	<20	<20	<10	24000		<.001	<.001	<.001	<.001	<.001
NYSDEC 2	22-24	<20	<20	<10	19900			0.001 [SU]	<.001	<.001	<.001
NYSDEC 2	24-26		<20	<10			<.001	<.001		<.001	
NYSDEC 2	26-28	(20	<20	<10	17000		<.001	<.001	<.001	<.001	<.001
NYSDEC 2	28-30	(20	<20	<10	19100		<.001	<.001	<.001	<.001	<.001
NYSDEC 1	0-2	<20	(20	<10	17100		<.001	<.001	<.001	<.001	<.001
NYSDEC 1	2-4	<20	<20	<10	24900		<.001	<.001	<.001	<.001	<.001
NYSDEC 1	4-6	(20	<20	<10	25300		<.001	<.001	<.001	<.001	<.001
NYSDEC 1	8-6	<20	<20	<10	25600		<.001	<.001	<.001	<.001	<.001
NYSDEC 1	8-10	<20	<20	<10	26200		<.001	<.001	<.001	<.001	<.001
NYSDEC 1	10-12	<20	<20	<10	26600		<.001	<.001	<.001	<.001	<.001
NYSDEC 1	12-14	<20	<20	<10	24400		<.001	<.001	<.001	<.001	<.001
NYSDEC 1	14-16	<20	<20	<10	20500		<.001	<.001	<.001	<.001	<.001
NYSDEC 1	16-18	<20	<20	<10	23100		<.001	<.001	<.001	<.001	(.001
NYSDEC 1	18-20	<20	<20	<10	25400	ł	4.001	<.001	<.001	<.001	<.001
NYSDEC 1	20-22	<20	<20	<10	23400	ł	<.001	<.001	<.001	<.001	<.001
NYSDEC 1	22-24	<20	(20	<10	21700	1	<.001	<.001	<.001	<.001	(.001
NYSDEC 1	24-26	<20	<20	(10	20700		<.001	<.001	<.001	<.001	(.001
NYSDEC 1	26-28	(20	<20	(10	28500		<.001	<.001	<.001	<.001	<.001
NYSDEC 1	28-30	(20	<20	<10	29800		(.001	(.001	(.001	<.001	(.001
37 6

6ENESEE RIVER SEDIMENTS
{all concentrations in #g/kg}

SITE	depth (inches)	XTVS	TOC-1	TOC-2	AS	PB	HG	SE	BE	AG	BA	CD	CO	CR	CU
NYSDEC 1	0-2	2	1060	5900	2.9	18	(.04	<.5	1.1	<4	60	<2	4.9	14	20
NYSDEC 1	2-4	3		11400	3.1	18	(.04	(.5	1.1	(4	58	<2	4.1	14	20
NYSDEC 1	4-6	3	1740	7940	3.5	20	4.04	<.5	1.1	(4	82	(2	4.1	14	26
NYSDEC 1	6-8	2	1610	7300	2.5	17	4.04	<.5	0.9	(4		<2			
NYSDEC 1	8-10	2	3200	11500	4.3	36	0.66	(.5	1.1	<4	68 105	2.1	4.5	13	15
NYSDEC 1	10-12	2	2450	6200	6.3	29	0.23	<.5	1.1	(4	100		5 4.1	19 17	28
NYSDEC 1	12-14	2	812	3200	2.4	18	0.05	<.5	0.9	(4	75	2	3.1	9.6	
NYSDEC 1	14-16	3		7500	5.7	52	0.13	(.5	1.7	6.3	459	11	7.9	34	9.7
NYSDEC 1	16-18	4	4010	11000	6.7	70	0.29	<.5	1.7	(4	520	13	7.6	39	41 52
NYSDEC 1	18-20	4	7410	12775	6.4	62	0.23	<.5	1.7	26	730	19	7.6	43	
NYSDEC 1	20-22	3	2500	8300	5.6	45	0.13	(.5	1.5	44 (4	510	6.2	7.5	43	52 35
		•	2000	0000	0.0	-12	0.10	1.2	1.5	17	210	0.1	1.3	28	23
NYSDEC 2	0-2	9	3810	44100	6.3	83	0.42	0.5	1.5	<4	324	3.2	6.5	34	67
NYSDEC 2	2-4	20	6130	17700	7.2	174	0.96	0.5	1.5	(4	716	9.1	6.5	58	129
NYSDEC 2	4-6	20	9730	63500	8.8	310	2.7	1.2	1.8	<4	1630	28	7.6	138	290
NYSDEC 2	6-8	18	7700	7470	12	395	3.7	1.3	2	<4	3020	40	7.7	211	411
NYSDEC 2	8-10	11	8620	19100	10	192	1.5	1	1.9	18	1480	19	8	115	226
NYSDEC 2	10-12	16	4460	26300	7.4	65	0.34	(.5	1.6	<4	379	4.3	6.8	36	58
NYSDEC 2	12-14	9	4740	20000	6.1	44	0.16	4.5	1.5	<4	214	2.3	7	24	42
NYSDEC 2	14-16	4	3360	12760	4.7	37	0.17	<.5	1.4	<4	129	<2	5.5	17	28
NYSDEC 2	16-18	6	1810	9480	5.2	28	0.12	<.5	1.2	(4	133	(2	5.3	15	27
											100		010		
NYSDEC 3	0-2	4	5740	17300	6.1	37	0.08	<.5	1.9	(4	139	<2	7.8	27	39
NYSDEC 3	2-4	4	3830	15200	6.6	37	0.1	<.5	1.9	16	132	<2	8.4	25	38
NYSDEC 3	4-6	4	4320	26000	5.6	40	0.08	(.5	1.9	<4	139	<2	7.8	26	36
NYSDEC 3	6-8	4	3830	17300	5.4	43	0.08	<.5	1.8	(4	143	2.8	7.3	26	38
NYSDEC 3	8-10	4	3210		5.5	43	0.05	<.5	1.8	(4	138	2.7	7.5	26	44
NYSDEC 3	10-12	4	2590	18000	5.1	31	0.05	<.5	1.7	<4	120	<2	6.8	22	32
NYSDEC 3	12-14	3	2390	10200	4.2	29	<.04	<.5	1.3	<4	103	2	5.5	18	25
MYSDEC 3	14-16	3	2730	10700	4.2	24	<.04	<.5	1.4	<4	104	<2	6.3	18	24
NYSDEC 3	16-18	3	2230	14000	4.8	19	(.04	<.5	1.6	(4	109	(2	6.7	19	24
NYSDEC 3	18-20	4	6790	23300	5.5	38	0.04	<.5	1.7	12	164	3.2	7.6	25	37
NYSDEC 3	20-22	4	3910	18725	6.4	36	4.04	<.5	1.8	9	127	2.4	8	25	34
NYSDEC 3	22-24	3	2310	10700	5.5	21	<.04	<.5	1.6	(4	96	<2	7	19	24
NYSDEC 3	24-26	3	3830	12500	5.4	21	4.04	<.5	1.7	<4	101	(2	7.2	20	25

SENESEE RIVER SEDIMENTS (cont.) all concentrations in mg/kg

depth FE	MN	NI	SR	TI	VN	ZN	MO	SB	SN	TH	AL
(inches)											
0-2 16600	266	16	25	168	20	76	<8	(20	(20	<10	9890
2-4 17400	267	15	25	365	22	70	(8)				9430
4-6 17100	285	17	29	142	20	91	(8)				
6-8 14800	212	14	22	104	15						8970
8-10 19300	267	17	28	258							11600
10-12 17800	241	16	24	197			0.077				10700
12-14 17100	209	11	<20								7780
14-16 27500	491	31									18200
16-18 27300	485	34									18100
18-20 26900	463	33									17600
20-22 24300	530	30	43	136	23	264	<8	(20			14100
0-2 23200	485	30	50	70	23	259	(8)	<20	(20	<10	14200
2-4 22500	375	34	6868	58	23	506					13500
4-6 27800	437	53	111	115	30	1240	<8				16900
6-8 30000	444	59	164	138	34	1900					19100
8-10 29000	545	38	103	178	34	951					18300
10-12 23900	405	25	44	88	27	256					15300
12-14 24100	437	23	36	84	26	168					14300
14-16 21500	366	22	35	140	22	106	(8)				13200
16-18 18200	304	20	27	65	19	93	(8)	<20	<20		11500
0-2 20300	547	70	EA	00	70	150	10	100	100		
		_									
											13900
											16200
											17200
											18400
											17000
29-20 20200	241	21	41	87	28	92	<8	<20	<20	<10	17300
	(inches) 0-2 16600 2-4 17400 4-6 17100 6-8 14800 8-10 19300 10-12 17800 12-14 17100 14-16 27500 16-18 27300 18-20 26900 20-22 24300 0-2 23200 2-4 22500 4-6 27800 6-8 30000 8-10 29000 10-12 23900 12-14 24100 14-16 21500	(inches) 0-2 16600 266 2-4 17400 267 4-6 17100 285 6-8 14800 212 8-10 19300 267 10-12 17800 241 12-14 17100 209 14-16 27500 491 16-18 27300 485 18-20 26900 463 20-22 24300 530 0-2 23200 485 2-4 22500 375 4-6 27800 437 6-8 30000 444 8-10 29000 545 10-12 23900 405 12-14 24100 437 14-16 21500 366 16-18 18200 304 0-2 29300 543 2-4 28400 536 4-6 28100 485 6-8 26500 512 8-10 26000 487 10-12 25200 476 12-14 19600 373 14-16 20900 385 16-18 23400 473 18-20 26800 620 20-22 27600 563 22-24 24800 492	(inches) 0-2 16600 266 16 2-4 17400 267 15 4-6 17100 285 17 6-8 14800 212 14 8-10 19300 267 17 10-12 17800 241 16 12-14 17100 209 11 14-16 27500 491 31 16-18 27300 485 34 18-20 26900 463 33 20-22 24300 530 30 0-2 23200 485 30 2-4 22500 375 34 4-6 27800 437 53 6-8 30000 444 59 8-10 29000 545 38 10-12 23900 405 25 12-14 24100 437 23 14-16 21500 366 22 16-18 18200 304 20 0-2 29300 543 30 2-4 28400 536 30 4-6 28100 485 30 6-8 26500 512 31 8-10 26000 487 28 10-12 25200 476 27 12-14 19600 373 20 14-16 20900 365 23 16-18 23400 473 25 18-20 26800 620 30 20-22 27600 563 29 22-24 24800 492 26	(inches) 0-2 16600 266 16 25 2-4 17400 267 15 25 4-6 17100 285 17 29 6-8 14800 212 14 22 8-10 19300 267 17 28 10-12 17800 241 16 24 12-14 17100 209 11 <20	(inches) 0-2 16600 266 16 25 16B 2-4 17400 267 15 25 365 4-6 17100 285 17 29 142 6-8 14800 212 14 22 104 8-10 19300 267 17 28 258 10-12 17800 241 16 24 197 12-14 17100 209 11 <20	$ \begin{array}{c} (inches) \\ \hline 0-2 \ 16600 \ 266 \ 16 \ 25 \ 168 \ 20 \ 2-4 \ 17400 \ 267 \ 15 \ 25 \ 365 \ 22 \ 4-6 \ 17100 \ 285 \ 17 \ 29 \ 142 \ 200 \ 6-8 \ 14800 \ 212 \ 14 \ 22 \ 104 \ 15 \ 8-10 \ 19300 \ 267 \ 17 \ 28 \ 258 \ 23 \ 10-12 \ 17800 \ 241 \ 16 \ 24 \ 197 \ 21 \ 12-14 \ 17100 \ 209 \ 11 \ 420 \ 473 \ 22 \ 14-16 \ 27500 \ 491 \ 31 \ 50 \ 162 \ 29 \ 16-18 \ 27300 \ 485 \ 34 \ 53 \ 118 \ 28 \ 18-20 \ 26900 \ 463 \ 33 \ 55 \ 191 \ 27 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 23 \ 2-4 \ 22500 \ 375 \ 34 \ 6868 \ 58 \ 23 \ 4-6 \ 27800 \ 437 \ 53 \ 111 \ 115 \ 30 \ 6-8 \ 30000 \ 444 \ 59 \ 164 \ 138 \ 34 \ 8-10 \ 29000 \ 545 \ 38 \ 103 \ 178 \ 34 \ 10-12 \ 23900 \ 405 \ 25 \ 44 \ 88 \ 27 \ 12-14 \ 24100 \ 437 \ 23 \ 36 \ 84 \ 26 \ 14-16 \ 21500 \ 366 \ 22 \ 35 \ 140 \ 22 \ 16-18 \ 18200 \ 304 \ 20 \ 27 \ 66 \ 19 \ \ 28 \ 4-6 \ 28100 \ 485 \ 30 \ 49 \ 159 \ 31 \ 4-6 \ 28100 \ 485 \ 30 \ 49 \ 159 \ 31 \ 4-6 \ 28100 \ 485 \ 30 \ 46 \ 96 \ 28 \ 4-8 \ 26500 \ 512 \ 31 \ 44 \ 29 \ 24 \ 8-10 \ 26000 \ 487 \ 28 \ 47 \ 67 \ 27 \ 10-12 \ 25200 \ 476 \ 27 \ 42 \ 46 \ 27 \ 12-14 \ 19600 \ 373 \ 20 \ 32 \ 77 \ 21 \ 14-16 \ 20900 \ 385 \ 23 \ 33 \ 44 \ 22 \ 16-18 \ 23400 \ 473 \ 25 \ 36 \ 66 \ 26 \ 18-20 \ 26800 \ 620 \ 30 \ 45 \ 20 \ 27 \ 21 \ 14-16 \ 20900 \ 385 \ 23 \ 33 \ 44 \ 22 \ 16-18 \ 23400 \ 473 \ 25 \ 36 \ 66 \ 26 \ 18-20 \ 26800 \ 620 \ 30 \ 45 \ 20 \ 27 \ 21 \ 14-16 \ 20900 \ 385 \ 23 \ 33 \ 44 \ 22 \ 16-18 \ 23400 \ 473 \ 25 \ 36 \ 66 \ 26 \ 26 \ 27 \ 27 \ 27 \ 27 \ 2$	(inches) 1.0 1.0 1.0 1.0 0-2 16400 266 16 25 168 20 76 2-4 17400 267 15 25 365 22 70 4-6 17100 285 17 29 142 20 91 6-8 14800 212 14 22 104 15 71 8-10 19300 267 17 28 28 23 120 10-12 17800 241 16 24 197 21 108 12-14 17100 209 11 <20	$ \begin{array}{c} (inches) \\ \hline 0-2 \ 16400 \ 266 \ 16 \ 25 \ 168 \ 20 \ 76 \ (8 \ 2-4 \ 17400 \ 267 \ 15 \ 25 \ 365 \ 22 \ 70 \ (8 \ 4-6 \ 17100 \ 285 \ 17 \ 29 \ 142 \ 20 \ 91 \ (8 \ 6-8 \ 14800 \ 212 \ 14 \ 22 \ 104 \ 15 \ 71 \ (8 \ 8-10 \ 19300 \ 267 \ 17 \ 28 \ 258 \ 23 \ 120 \ (8 \ 10-12 \ 17800 \ 241 \ 16 \ 24 \ 197 \ 21 \ 108 \ (8 \ 12-14 \ 17100 \ 209 \ 11 \ (20 \ 473 \ 22 \ 49 \ (8 \ 14-16 \ 27500 \ 491 \ 31 \ 50 \ 162 \ 29 \ 277 \ (8 \ 14-16 \ 27500 \ 491 \ 31 \ 50 \ 162 \ 29 \ 277 \ (8 \ 14-16 \ 27500 \ 491 \ 31 \ 50 \ 162 \ 29 \ 277 \ (8 \ 16-18 \ 27300 \ 485 \ 34 \ 53 \ 118 \ 28 \ 341 \ (8 \ 18-20 \ 26900 \ 463 \ 33 \ 55 \ 191 \ 27 \ 424 \ (8 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 264 \ (8 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 264 \ (8 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 264 \ (8 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 264 \ (8 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 264 \ (8 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 264 \ (8 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 256 \ (8 \ 4-6 \ 27800 \ 437 \ 53 \ 111 \ 115 \ 30 \ 1240 \ (8 \ 68 \ 4-6 \ 27800 \ 444 \ 59 \ 164 \ 138 \ 34 \ 1900 \ (8 \ 8 \ 6-8 \ 30000 \ 444 \ 59 \ 164 \ 138 \ 34 \ 1900 \ (8 \ 8 \ 14-16 \ 21500 \ 366 \ 22 \ 35 \ 140 \ 22 \ 106 \ (8 \ 14-16 \ 21500 \ 366 \ 22 \ 35 \ 140 \ 22 \ 106 \ (8 \ 14-16 \ 21500 \ 366 \ 26 \ 22 \ 35 \ 140 \ 22 \ 106 \ (8 \ 14-16 \ 21500 \ 366 \ 530 \ 4-6 \ 27 \ 50 \ 46 \ 28 \ 14-16 \ 21500 \ 366 \ 50 \ 25 \ 30 \ 4-6 \ 27 \ 122 \ (8 \ 14-16 \ 21500 \ 366 \ 50 \ 25 \ 33 \ 144 \ 29 \ 24 \ 168 \ (8 \ 14-16 \ 21500 \ 366 \ 512 \ 37 \ 106 \ (8 \ 14-16 \ 21500 \ 366 \ 512 \ 37 \ 144 \ 29 \ 24 \ 168 \ (8 \ 14-16 \ 21500 \ 366 \ 512 \ 37 \ 166 \ 16 \ 16 \ 16 \ 16 \ 16 \ 16 \ $	$ \begin{array}{c} (inches) \\ \hline 0-2 \ 16600 \ 266 \ 16 \ 25 \ 168 \ 20 \ 76 \ (8 \ (20 \ 2-4 \ 17400 \ 267 \ 15 \ 25 \ 365 \ 22 \ 70 \ (8 \ (20 \ 4-6 \ 17100 \ 285 \ 17 \ 29 \ 142 \ 20 \ 91 \ (8 \ (20 \ 6-8 \ 14800 \ 212 \ 14 \ 22 \ 104 \ 15 \ 71 \ (8 \ (20 \ 8-10 \ 17300 \ 267 \ 17 \ 28 \ 258 \ 23 \ 120 \ (8 \ (20 \ 10-12 \ 17800 \ 241 \ 16 \ 24 \ 197 \ 21 \ 108 \ (8 \ (20 \ 12-14 \ 17100 \ 209 \ 11 \ (20 \ 473 \ 22 \ 49 \ (8 \ (20 \ 14-16 \ 27500 \ 491 \ 31 \ 50 \ 162 \ 29 \ 279 \ (8 \ (20 \ 14-16 \ 27500 \ 491 \ 31 \ 50 \ 162 \ 29 \ 279 \ (8 \ (20 \ 14-16 \ 27500 \ 491 \ 31 \ 50 \ 162 \ 29 \ 279 \ (8 \ (20 \ 14-16 \ 27500 \ 485 \ 34 \ 53 \ 118 \ 28 \ 341 \ (8 \ (20 \ 20 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 264 \ (8 \ (20 \ 20 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 264 \ (8 \ (20 \ 20 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 264 \ (8 \ (20 \ 20 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 259 \ (8 \ (20 \ 20 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 259 \ (8 \ (20 \ 20 \ 20-22 \ 24300 \ 530 \ 30 \ 45 \ 316 \ 23 \ 255 \ 44 \ 88 \ 27 \ 256 \ (8 \ (20 \ 10-12 \ 23900 \ 444 \ 59 \ 164 \ 138 \ 34 \ 1900 \ (8 \ (20 \ 10-12 \ 23900 \ 445 \ 33 \ 30 \ 50 \ 92 \ 32 \ 166 \ (8 \ (20 \ 10-12 \ 23900 \ 465 \ 30 \ 45 \ 23 \ 140 \ 22 \ 106 \ (8 \ (20 \ 16-18 \ 18200 \ 304 \ 20 \ 27 \ 66 \ 19 \ 93 \ (8 \ (20 \ 16-18 \ 18200 \ 304 \ 20 \ 27 \ 66 \ 19 \ 93 \ (8 \ (20 \ 16-18 \ 18200 \ 304 \ 20 \ 27 \ 66 \ 19 \ 93 \ (8 \ (20 \ 16-18 \ 18200 \ 304 \ 20 \ 27 \ 66 \ 19 \ 93 \ (8 \ (20 \ 16-18 \ 138 \ 34 \ 1900 \ (8 \ (20 \ 16-18 \ 18200 \ 304 \ 20 \ 27 \ 66 \ 19 \ 93 \ (8 \ (20 \ 16-18 \ 18 \ 20 \ 16-18 \ 18200 \ 304 \ 20 \ 27 \ 66 \ 19 \ 93 \ (8 \ (20 \ 16-18 \ 18 \ 20 \ 16-18 \ 18200 \ 304 \ 20 \ 20 \ 27 \ 66 \ 19 \ 93 \ (8 \ (20 \ 16-18 \ 18 \ 20 \ 20 \ 16-18 \ 18 \ 20 \ 20 \ 16-18 \ 20 \ 20 \ 16-18 \ 18 \ 20 \ 20 \ 16-18 \ 20 \ 20 \ 16-18 \ 20 \ 20 \ 20 \ 20 \ 20 \ 20 \ 20 \ 2$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} (inches) \\ \hline 0-2 \ 16400 \ 264 \ 16 \ 25 \ 168 \ 20 \ 76 \ (8 \ (20 \ (20 \ (10 \ 4-6 \ 17100 \ 285 \ 17 \ 29 \ 142 \ 20 \ 91 \ (8 \ (20 \ (20 \ (10 \ 8-10 \ 19300 \ 267 \ 17 \ 28 \ 258 \ 23 \ 120 \ (8 \ (20 \ (20 \ (10 \ 10-12 \ 17800 \ 241 \ 16 \ 21 \ 17 \ 28 \ 258 \ 23 \ 120 \ (8 \ (20 \ (20 \ (10 \ 14-16 \ 27500 \ 491 \ 31 \ 50 \ 162 \ 29 \ 277 \ (8 \ (20 \ (20 \ (10 \ 14-16 \ 27500 \ 491 \ 31 \ 50 \ 162 \ 29 \ 277 \ (8 \ (20 \ (20 \ (10 \ 14-16 \ 27500 \ 491 \ 31 \ 50 \ 162 \ 29 \ 277 \ (8 \ (20 \ (20 \ (10 \ 14-16 \ 27500 \ 491 \ 31 \ 50 \ 162 \ 29 \ 277 \ (8 \ (20 \ (20 \ (10 \ 14-16 \ 27500 \ 491 \ 31 \ 50 \ 162 \ 29 \ 277 \ (8 \ (20 \ (20 \ (10 \ 14-16 \ 27500 \ 491 \ 31 \ 50 \ 162 \ 29 \ 277 \ (8 \ (20 \ (20 \ (10 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 255 \ 48 \ (20 \ (20 \ (10 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 50 \ 68 \ (20 \ (20 \ (10 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 506 \ (8 \ (20 \ (20 \ (10 \ 20-22 \ 24300 \ 530 \ 30 \ 43 \ 136 \ 23 \ 506 \ (8 \ (20 \ (20 \ (10 \ 20-22 \ 24300 \ 530 \ 30 \ 44 \ 59 \ 164 \ 138 \ 34 \ 1900 \ (8 \ (20 \ (20 \ (10 \ 12-14 \ 21500 \ 366 \ 22 \ 35 \ 140 \ 22 \ 35 \ 140 \ 22 \ 106 \ 68 \ (20 \ (20 \ (10 \ 12-14 \ 21500 \ 366 \ 22 \ 35 \ 140 \ 22 \ 35 \ 140 \ 22 \ 166 \ 8 \ (20 \ (20 \ (10 \ 14-16 \ 21500 \ 366 \ 22 \ 35 \ 140 \ 22 \ 35 \ 140 \ 22 \ 166 \ 8 \ (20 \ (20 \ (10 \ 14-16 \ 21500 \ 366 \ 30 \ 49 \ 159 \ 31 \ 157 \ 34 \ 48 \ 20 \ (20 \ (10 \ 14-16 \ 21500 \ 366 \ 22 \ 35 \ 140 \ 22 \ 35 \ 140 \ 22 \ 166 \ 168 \ 20 \ (20 \ (10 \ 14-16 \ 21500 \ 366 \ 20 \ (20 \ (10 \ 14-16 \ 21500 \ 366 \ 30 \ 457 \ 35 \ 140 \ 22 \ 20 \ (10 \ 14-16 \ 21500 \ 366 \ 20 \ (20 \ (10 \ 14-16 \ 21500 \ 366 \ 20 \ (20 \ (10 \ 14-16 \ 21500 \ 366 \ 20 \ (20 \ (10 \ 14-16 \ 21500 \ 366 \ 20 \ (20 \ (10 \ 14-16 \ 21500 \ 366 \ 20 \ (20 \ (10 \ 14-16 \ 21500 \ 366 \ 20 \ (20 \ (10 \ 14-16 \ 21500 \ 366 \ 20 \ (20 \ (10 \ 14-16 \ 21500 \ 366 \ 20 \ (20 \ (10 \ 14-16 \ 21500 \ 366 \ 20 \ (20 \ (10 \ 14-16 \ 21500 \ 366 \ 20 \ (20 \ (10 \ 14-16 \ 21500 \ $

GENESEE RIVER SEDIMENTS (cont.) all concentrations in mg/kg

Aroclors

39

SITE					1254	1260	
	(inches)		1242				
NYSDEC 1	0-2	<.01	<.01	<.01	<.01	<.01	
NYSDEC 1	2-4	<.01	<.01	<.01	<.01	<.01	
NYSDEC 1	4-6	<.01	<.01	<.01	<.01	<.01	
NYSDEC 1	6-8	<.01	<.01	<.01	<.01	<.01	
	8-10	<.01	<.01	<.01	<.01	<.01	
NYSDEC 1	10-12	<.01	<.01	<.01	<.01	<.01	
NYSDEC 1	12-14	<.001	<.001	0.016	0.016	<.001	
	14-16	<.001	<.001	0.053	0.027	<.001	
	16-18						
	18-20	<.001	<.001	0.088	0.037	<.001	
NYSDEC 1	20-22	<.001	<.001	0.034	0.041	<.001	
NYSDEC 2					0.26		
NYSDEC 2					0.35		
NYSDEC 2	4-6	<.05	<.05	1	0.48	<.05	
NYSDEC 2	6-8	<.05	<.05	1.3	0.53	(.05	
NYSDEC 2					0.27	<.01	
NYSDEC 2	10-12	(.01	<.01	0.1	0.13	<.01	
NYSDEC 2	12-14	<.03	<.03	0.02 [50]	[UI]	<.03	
NYSDEC 2	14-16	<.01	<.01	0.06	0.09	<.01	
SDEC 2	15-18	<.01	<.01	0.12	0.12	<.01	
NYSDEC 3	0-2	<.01	<.01	<.01	<.01	<.01	
NYSDEC 3	2-4			<.02	<.02	<.02	
NYSDEC 3	4-6	<.01	<.01	<.01	<.01	<.01	
NYSDEC 3	6-8	<.01	<.01	<.01	<.01	<.01	
NYSDEC 3	8-10	<.01	<.01	<.01	<.01	<.01	
NYSDEC 3	10-12	<.01	<.01	<.01	<.01	<.01	
NYSDEC 3	12-14	<.01	<.01	<.01	<.01	<.01	
NYSDEC 3	14-16	<.01	<.01	<.01	<.01	<.01	
NYSDEC 3	16-18	<.01	<.01	<.01	<.01	<.01	
NYSDEC 3	18-20				0.01 [SU]	<.01	
NYSDEC 3	20-22	<.01	<.01	<.01	0.01 [SU]	<.01	
NYSDEC 3	22-24	(.01	<.01	<.01	0.01 [SU]	<.01	
NYSDEC 3	24-25	<.02	<.02	<.02	<.02	<.02	

G

OSWEGO HARBOR SEDIMENTS (all concentrations in mg/kg, deoths in inches)

depth	XTVS	TOC-1	TOC-2	PCB	AS	PB	HS	SE	BE	AS	BA	CD	CO	CR	CU	FE	MN
0-2	3	2840	13300	0.019	ND	31	0.09	<.5	0.7	(4	75	10	7 /	10		10044	
2-4	4	8650	8740		2.6	35	0.15	(.5	0.8		78					12200	277
4-6	3		8330		1.7	33	0.12		0.7							13100	291
6-8	4		1000		2	38	0.27	(.5	0.8		67					11600	259
8-10	4		16300		2.2		0.21	<.5			89					13800	295
10-13	5		4110		1.8		0.27		0.9		96					13400	349
			1110	11007	1.0	30	0.27	<.5	0.8	<4	77	<2	4	20	33	13000	387
depth	NI	SR	TI	VN	ZN	MO	SB	SN	TH	AL		a-HCH	b-HCH	n-HCH	4-HC	H hepta	chlor
		10		7212	20032									9 11011	0 1101	i nepro	
0-2	13	49	232		67	<8	<20	<20	<10	7190		(.001	<.001	<.001	<.001	<.001	
2-4	15	55	236	200.00	80	<8	<20	<20	<10	8110					4.001	<.001	
4-6	15	46	176		76	<8	<20	<20	<10	7760				<.001		<.001	
6-8	19	50	221		100	<8	<20	<20	<10	8520					(.001	<.001	
8-10	18	55	229		106	<8	<20	(20	(10	8900					(.001	<.001	
10-13	17	59	199	18	112	<8	<20	<20		9520				<.001		<.001	
dooth		p,p'-D	DE	dieldrin		aldrin	her	tachlo	en	dosulfar	T	andria		p'-DDD			
								oxide	en	10301181		enurii	1 P.1	עעע- ק	enac	sulfan .	11
0-2		TR		(.001		<.001		<.001		<.001		1 001		70			
2-4		TR		<.001		(.001		(.001		(.001		<.001		TR		<.001	
4-6		TR		<.001		(.001		<.001				<.001		TR		<.001	
6-8		TR		<.001		(.001				<.001		<.001		TR		<.001	
B-10		TR		(.001				(.001		<.001		<.001		TR		<.001	
10-13		TR		(.001		<.001		<.001		<.001		<.001		TR		<.001	
		IR		1.001		<.001		<.001		<.001		<.001		TR		<.001	
depth		endi		endosul f	an	p,p'DI)T	methox	ychlor	toxa	aphene		chloro	lane	sirex	Ar. 13	221
		ald	ehyde	sulfate													
0-2			(.001	<.001		TR			(.02		(.02		<.002		<.001	<.001	
2-4			<.001	<.001		TR			(.02		4.02		<.002		<.001	(.001	
4-6			<.001	<.001		TR			<.02		4.02		(.002		4.001	<.001	
6-8			<.001	<.001		TR			(.02		(.02		(.002		4.001	<.001	
8-10			(.001	(.001		TR			(.02		4.02		(.002		(.001		
10-13			(.001	4.001		TR			<.02		(.02		4.002		(.001	<.001	
14											1.02		1.002		1.001	<.001	
depth	1	Ar. 101	141	Ar. 1248		- 1051					-						
(inches)		1242		Hr. 1240	1	Ar. 1254		Ar. 128	50	2,4'-DD	D	o,p'-D	DE	o,p'-D	DT		
0-2		.001		0.012		0.007		<.00)1	TR		UI		TR			
2-4	-	.001		0.0015	(0.0013		(.00		TR		UI		TR			
4-6		.001		0.021		0.018											
6-8		.001		0.026		0.018		<.00		TR		UI		TR			
8-10		.001		0.045				(.00		TR		UI		TR			
10-13						0.012		<.00		TR		UI		TR			
10.10		.001		0.04		0.029		<.00	01	TR		UI		TR			

BLACK RIVER SEDIMENTS (all concentrations in mg/kg)

C.

SITE	depth (inches)	ZTVS	Ar1248	TOC-1	TOC-2	AS	PB	H5	SE	BE	A5	BA	CD	CO	CR	CU	FE	
SOUTH SHORE	0-2	21	0.2	11700	130000	4.9	167	3.9	0.5	2.7	<4	138	2	8	42	122	27500	
SOUTH SHORE	2-4	15	0.03	10300	106000	4	166	1.6	(.5	2.6	(4	105	(2	8.6	41	127	28300	
SOUTH SHORE	4-6	15	0.1	10800	83300	3.4	152	1.4	(.5	2.2	(4	100	<2	6.6	33	133	26000	
SOUTH SHORE	6-8	18	0.05	9300	105000	3.8	139	1.6	(.5	2.1	<4	101	<2	7.8	32	111	23900	
SOUTH SHORE	8-10	16	0.02	6800	211000	3.3	131	1.1	0.5	2.1	<4	101	<2	6.7	34	112	24800	
SOUTH SHORE	10-12	16	0.03	4700	95000	3.2	132	1.1	(.5	2.1	<4	99	<2	6.4	30	117	24600	
SOUTH SHORE	12-14	11	0.02	4800	52800	2.3	71	0.9	<.5	2	(4	90	<2	6.4	26	51	23900	
SOUTH SHORE	14-16	12	0.02	4900	78500	1.3	76	1.1	(.5	2	(4	89	<2	5	28	38	23500	
SOUTH SHORE	16-18	11	0.03	2800	35600	1.3	65	1	(.5	1.7	<4	80	<2	4.2	25	32	21000	
SOUTH SHORE	18-20	9	0.02	3100	68500	1.7	94	0.9	<.5	2	<4	86	<2	4.8	25	48	24500	
NORTH SHORE	0-2	15	0.01	5000	67600	3	76	0.5	<.5	2.2	{4	118	<2	6.1	29	71	24300	
NORTH SHORE	2-4	19	<.003	13200	137000	4	85	0.5	(.5	2.3	<4	133	<2	6.3	32	77	25600	
NORTH SHORE	4-6	22	<.001	7700	93800	4.2	95	0.4	<.5	2.4	<4	134	<2	7	37	93	26700	
NORTH SHORE	6-8	18	<.001	7200	92800	3.9	194	0.8	<.5	2.2	<4	132	<2	5.8	53	107	25400	
MORTH SHORE	8-10		<.001	7400	110000	4.5	147	2.2	<.5	1.9	<4	109	<2	4.7	34	143	21300	
ATH SHORE	10-12	19	<.001	8700	52600	3.2	87	1	<.5	1.7	<4	100	<2	4.9	24	96	20000	
NORTH SHORE	12-14	17	<.001	7300	127000	3.6	83	1.5	<.5	2	<4	110	<2	5.9	24	105	25000	
NORTH SHORE	14-17	12	<.001	5500	29100	1.9	56	0.6	<.5	1.8	<4	98	<2	5.9	21	72	24000	
END OF ISLAND	0-2	14		3200	63300	2.6	59	0.7	<.5	2.2	<4	83	<2	7	21	58	23800	
END OF ISLAND	2-4	15		3900	34200	3.4	74	0.6	<.5	2.4	<4	94	<2	8.2	24	69	25200	
END OF ISLAND	4-6	18		14200	93500	3.6	124	1.7	<.5	2.4	<4	102	<2	9.2	35	87	23800	
END OF ISLAND	6-8	20		16100	12200	3.6	124	2.6	<.5	2	<4	89	<2	6.8	33	99	22200	
END OF ISLAND	8-10	22		12300	76000	5.2	113	8.6	<.5	2.3	<4	98	<2	7.4	37	92	24000	
END OF ISLAND	10-12	23		9300	98900	5.2	129	4.7	0.5	2.4	<4	115	<2	7.6	42	121	26200	
END OF ISLAND	12-14	19		13200	107000	3.5	117	1	0.6	2.5	<4	121	<2	9.1	41	96	29900	
END OF ISLAND	14-16	20		12000	131000	3.7	111	0.8	<.5	2.1	<4	99	<2	7.9	31	106	25000	

42

BLACK RIVER SEDIMENTS (CONT.)

SITE	depth	MN	NI	SR	TI	VN	ZN	MO	SB	SN	TH	AL
	(inches)											
SOUTH SHORE	0-2	299	26	32	162	39	594	<8	<20	<20	<10	28500
SOUTH SHORE	2-4	342	28	23	272	38	529	<8	(20	28	<10	23300
SOUTH SHORE	4-6	296	19	21	400	35	410	<8	<20	<20	<10	22200
SOUTH SHORE	6-8	305	21	(20	172	30	429	<8	(20	<20	<10	21000
SOUTH SHORE	8-10	286	22	(20	182	34	386	<8	<20	<20	<10	22800
SOUTH SHORE	10-12	273	20	<20	272	35	330	<8	<20	(20	<10	22100
SOUTH SHORE	12-14	262	18	<20	438	40	164	<8	<20	<20	<10	22700
SOUTH SHORE	14-16	274	18	<20	342	39	143	<8	<20	<20	<10	22700
SOUTH SHORE	16-18	237	15	<20	312	35	125	<8	<20	<20	<10	20500
SOUTH SHORE	18-20	312	16	<20	235	32	184	<8	<20	<20	<10	18300
NORTH SHORE	0-2	262	26	<20	631	43	204	(8	<20	<20	<10	26100
NORTH SHORE	2-4	244	27	<20	416	46	225	<8	<20	<20	<10	29400
NORTH SHORE	4-6	246	27	<20	408	48	215	<8	<20	<20	<10	30400
'ORTH SHORE	6-8	229	25	<20	296	43	215	<8	<20	<20	<10	27800
WORTH SHORE	8-10	191	23	<20	484	35	235	<8	<20	<20	<10	21000
NORTH SHORE	10-12	177	19	<20	357	34	169	<8	<20	<20	<10	21300
NORTH SHORE	12-14	221	20	<20	496	39	182	<8	<20	<20	<10	23700
NORTH SHORE	14-17	207	20	<20	250	32	127	<8	<20	<20	<10	20000
END OF ISLAND	0-2	262	20	<20	270	30	346	<8	<20	<20	<10	19500
END OF ISLAND	2-4	267	21	21	285	34	410	<8	<20	<20	<10	21800
END OF ISLAND	4-6	235	25	23	117	28	553	<8	<20	<20	<10	20400
END OF ISLAND	6-8	20	23	20	342	28	480	<8	<20	<20	<10	19200
END OF ISLAND	8-10	213	25	<20	184	32	586	<8	<20	<20	<10	22700
END OF ISLAND	10-12	221	28	22	150	38	534	<8	<20	20	<10	26400
END OF ISLAND	12-14	263	28	<20	184	43	435	<8	<20	25	<10	26900
END OF ISLAND	14-16	213	26	23	158	34	291	<8 ⊚	<20	<20	<10	22300

NIACARA COUNTY SOIL AND WATER CONSERVATION DISTRICT

4487 LAKE AVENUE LOCKPORT, NEW YORK 14094 TELEPHONE: 434-4949

January 2, 1990

Niagara County Health Department Enviornmental Division 5467 Upper Mountain Road Lockport, NY 14094

Dear Sir:

The Niagara County SWCD is trying to collect any data available on Water Quality Studies that have been done on the streams, creeks, rivers and lakes that encompass our county boundaries. If current water quality programs go as planned the Soil and Water Conservation Districts statewide will be assisting DEC and other agencies in planning and implementation work on non-point source pollution problems.

want to collect any existing data available on water quality studies that have been done . are in the process of being done. This information will be placed in a library that will be available to the public and other involved agencies. The District plans on using this information for preparing applications and developing water quality strategies and plans for implementation of non-point source pollution problems.

The following is a list of watersheds we are interested in collecting any available data

on: Bonds Lake Jeddo Creek Johnson Creek Eighteen Mile Creek Twelve Mile Creek Four Mile Creek Bull Creek Tonawanda Creek Cayuga and Black Creek Bergholtz Creek Niagara River Lake Ontario Erie Barge Canal

If there is a cost in obtaining this material, contact our office at 716-434-4949 and we will make the needed arrangements. Thank you for your time and efforts.

Yours In Conservation,

Richard Tillman District Manager

RT:sb

NIAGARA COUNTY

HEALTH DEPARTMENT 5467 UPPER MOUNTAIN ROAD LOCKPORT, NEW YORK 14094 PATRICIA M. POWELL Public Health Director 716-439-6129

January 11, 1990

Phillips Carter Service 2481 Lockport Olcott Road Newfane, NY 14108

Attention: Robert Phillips

Re: 18 Mile Creek Town of Newfane

Dear Mr. Phillips:

As a result of your correspondence dated December 18, 1989 concerning the above referenced matter I have attached the 1989-1990 Health Advisory for Consumption of Sportfish and Wildlife taken in New York State.

Although the primary contact for surface and ground water quality in New York State is the New York State Department of Conservation, You may also want to contact the Niagara County Soil & Water Conservation District. Attached for your information is a recent correspondence from the Niagara County Soil and Water Conservation District indicating that they are presently compiling data for public review.

Yours very truly,

Health Engineer

Ronald Gwozdek, P.E. Supervisory Public

RG:1j

Attach.

NEW YORK STATE DEPARTMENT OF HEALTH

INTEROFFICE MEMORANDUM

To: Regional Offices District Directors County Health Commissioners/Public Health Directors

From: Dr. Nancy Kim, Director, Division of Environmental Health

Date: April 21, 1989

Subject: 1989-1990 Health Advisory for Consumption of Sportfish and Wildlife Taken in New York State

Attached is a copy of a draft press release and the 1989-1990 health advisory for sportfish and wildlife consumption which will be printed in the N.Y.S. Environmental Conservation Department's "New York State Fishing, Small Game Hunting and Trapping Regulations Guide." The new health advisory has been finalized; the wording in the draft press release may undergo minor revision and be released within one week.

Also attached is a draft public information brochure prepared by NYS DOH which is to accompany the health advisory. We will provide you with additional copies of the press release and this brochure for public distribution in the near future.

If you have any questions or want additional information please contact Mr. Tony Forti of my staff at (518) 458-6405.

NK/tf/pb Attachments A0'630

cc: Dr. Randolph Dr. Stasiuk Dr. Hetling Dr. Hawley Dr. Grey Mr. Smith Mr. Tramontano Mr. Hudson Mr. Hudson Mr. Forti Regional Directors of Environmental Health Mr. Slocum

-4/21/81 DRAFT PRESS RELEASE

ALBANY, April -- The State Health Department's 1989-90 fish consumption advisories contain new recommendations for Mohawk River smallmouth bass, Kinderhook Lake white perch and Lake Champlain lake trout, plus some new advice on consuming eels from marine waters, tomalley from lobsters and mustard from crabs.

The advisories, which are published each fall in the State Department of Environmental Conservation (DEC) Fishing and Hunting Guide, are developed from data obtained in an ongoing DEC monitoring program. Fish samples from bodies of water statewide are analyzed for various contaminants and the results are assessed by Health Department toxicologists who revise or modify advisories based on the findings.

The Health Department's general advisory for fish consumption recommends that no more than one meal per week (one-half pound) of fish be eaten from any fresh water body in New York State, the Hudson River Estuary and the New York City Harbor areas and that women of childbearing age, infants and children under the age of 15 should not eat fish from waters which have been shown to be contaminated.

This year an advisory of Eat No More Than One Meal Per Month has been added for smallmouth bass taken from the Mohawk River below Lock #7. in Schenectady. This change was necessary because average PCB levels in this species exceeded the Federal Food and Drug Administration (FDA) limit of 2 parts per million (ppm). The previous advisory of Eat None for white perch from this same section of the river remains in effect.

A finding that the average PCB levels of white perch samples taken from Kinderhook Lake was less than the average FDA limit of 2 ppm has caused the former advisory of Eat No More Than One Meal Per Month to be discontinued. However, the general advisory of Eat No More Than One Meal Per Week , applying to all other fish species caught from this lake remains in effect. There is also a Eat No More than One Meal Per Month advisory for American eels taken from Kinderhook Lake.

1 11

A large number of lake trout samples collected by DEC and the Vermont Agency of Natural Resources from Lake Champlain showed that lake trout less than 25 inches in length have an average PCB level considerably below FDA's 2 ppm limit, while the average for larger lake trout exceeded that limit. This led the Health Department this year to limit the advisory to Eat No More Than One Meal Per Month of Lake Champlain lake trout to fish larger than 25 inches only. The former advisory was Eat No More Than One Meal Per Month for all lake trout regardless of size.

American eel samples gathered from New York State marine waters showed that these fish had average PCB levels less than the 2 ppm FDA limit for PCBs, but above levels generally found in marine fish species. To minimize PCB intake, the <u>Eat No More Than One Meal Per Week</u> advisory for bluefish has been extended to include the American eels caught in marine waters. American eels from the Hudson, Harlem and East Rivers, and New York Harbor should not be eaten at all.

1100 211

The Health Department is advising the public to avoid the consumption of the hepatopancreas (sometimes called mustard in crab or tomalley in lobster) of certain crustaceans. This soft green substance found in the tail or body section of crab or lobster has been found to contain high levels of contaminants, including PCBs and heavy metals. For this reason, the hepatopancreas should not be eaten. In contrast, crab and lobster flesh, the part eaten by most people, generally contains much lower levels of these contaminants and is acceptable for human consumption.

There is a recommendation that no more than six crabs per week taken from the Hudson River and New York Harbor be eaten and that the cooking liquids from those crabs should be discarded.

The complete list of New York State fish advisories specific to species and body of water follows. Anglers fishing in waters of other states or Canadian provinces should consult advisory information from appropriate agencies in those areas.

This year The Health Department is making available a brochure which contains further information on the health advisory. This brochure can be obtained at NYSDEC and NYSDOH regional offices, or by calling 1-800-458-1158.

e tapka Bishan

: >

TABLE 1. PCB LEVELS IN FISH SUBJECT TO W HEALTH ADVICE IN 1989

Sec. Sec.					
	Year		No of	Chemical Conce	ntration (ppm)
Waterbody	Collected	Species	<u>Fish</u>	Average	Range
Mohawk River					
Below Lock #7	1987	Smallmouth Bass	7	2.1	0.9-3.9
Kinderhook Lake	1988	White Perch	10	0.69	0.05-1.9
Lake Champlain'	1987 & 1988	Lake Trout <25"	22	0.99	0.22-2.4
		Lake Trout >25"	19	3.0	0.66-5.2
Atlantic Ocean					
and Long Island Sound	1986	American eels	229	0.87	<0.10-5.2

TABLE 2. CHEMICAL CONTAMINANTS DATA FOR LONG ISLAND SOUND LOBSTERS (COLLECTED IN 1986)

<u>Number c</u>	of Lobsters	<u>Chemical</u>	<u>Tissue</u>	Average Concentration (ppm)	Range
				direction .	
80		PCB	Muscle	<0.10	Not detected
No. 13 1999 N		PCB	Hepatopancreas	3.2	0.66-9.1
	·	Cadmium	Muscle	0.05	<0.04-0.07
n se catalone es		Cadmium	Hepatopancreas	6.1	2.3-14

1 -

-

5

.

di una

J680435

1989-90 HEALTH ADVISORY

The following recommendations are based on evaluating contaminant levels in fish and wildlife. To minimize potential adverse health impacts, the New York State Department of Health recommends: The following recommendations are based on evaluating contaminant

12,04107 .

1.112

 Eat no more than one meal (one half pound) per week of fish from the state's freshwaters, the Hudson River estuary, or the New York City harbor area (the New York waters of the Hudson River to the veriazano Bartows Billy, Kill Van Kull, to the Throgs Neck Bridge, the Arthur Kill, Kill Van Kull, Hudson River to the Verrazano Narrows Bridge, the East River and Harlem River), except as recommended below.

F.,

• Women of childbearing age, infants and children under the age of 15 should not eat fish with elevated contaminant levels. The fish species listed from the waters below have contaminant levels that exceed federal food standards and most fish taken from these waters contain elevated contaminant levels.

> Observe the following restrictions on eating fish from these waters and their tributaries to the first barrier impassable by fish:

Water	Species	Recommendation
Belmont Lake (Suffolk Co.)	Carp	Eat None.
Buffalo River and Harbor (Erie Co.)	Carp	Eat none.
Canadice Lake (Ontario Co.)	Lake or brown trout over 21"	Eat none.
Canandaigua Lake (Ontario-Yates Co.)	Lake trout over 24"	Eat no more than one meal per month.
Cayuga Creek (Niagara Co.)	All species	Eat none.
East River (NYC)	American eel	Eat none.
Fourth Lake (Herkimer- Hamilton Co.)	Lake trout	Eat none.
Freeport Reservoir (Nassau Co.)	All species	Eat no more than one meal per month.
Gill Creek (Niagara Co.; mouth to Hyde Park Lake Dam)	All species	Eat none.
Hall's Pond (Nassau Co.)	Carp, Goldfish	Eat none.
Harlem River	American eel	Eat none.

Hoosic River (Rensselaer Co.)

(NYC)

Brown and rainbow trout .

Eat no more than one meal per month.

1.1

1.

Hudson River

£.

....

- Hudson Falls to All species Troy Dam
 - Troy Dam south to and including the Lower N.Y. Harbor

American eel, White perch, Carp, Goldfish, Brown bullhead, Largemouth bass, Pumpkinseed, White catfish, Walleye, Striped bass

-2-

Black crappie, Rainbow smelt, Atlantic needlefish, Bluefish, Tiger muskellunge, Northern pike

and the same state

- hepatopancreas (mustard, liver or tomalley)

- cooking liquid

Indian Lake (Lewis Co.)

Irondequoit Bay

Carp

All species

Lake trout over 25"

Blue crab

Keuka Lake (Yates-Steuben Co.)

*Kinderhook Lake (Columbia Co.)

*Lake Champlain

-whole lake

-Bay within

: 11

Cumberland Head to

Valcour Island

Lake Ontario, St.,

Lawrence and Niagara

River below the falls

than 25" American eel,

American eel

Brown bullhead

Lake trout greater

Eel, Channel catfish, Eat none. Lake trout, Chinook salmon, Coho salmon over 21", Rainbow trout over 25", Brown trout over 20".

1

Carp, White perch, smaller Coho salmon, Rainbow and Brown trout.

No fishing.

Eat none.

Eat no more than one meal per month.

Eat no more than 6 crabs per week.

Eat none.

Discard.

Eat no more than one meal per month.

Eat none.

Eat no more than one meal per month.

Eat no more than one meal per month. Loft's Pond (Nassau Co.)

Long Pond (Lewis Co.)

Upper Massapequa Reservoir (Nassau Co.)

*Mohawk River (Below Lock 7)

Nassau Lake (Rensselaer Co.)

Niagara River (entire)

Niagara River (below the falls; also see Lake Ontario)

Onondaga Lake (Onondaga Co.)

Oswego River (Oswego Co.; power dam in Oswego to upper dam at Fulton)

St. James Pond (Suffolk Co.)

St. Lawrence River (see Lake Ontario)

Salmon River (Oswego Co.; mouth to Salmon Reservoir; also see Lake Ontario)

Saw Mill River * (Westchester Co.)

Schroon Lake (Warren Co.)

Sheldrake River (Westchester Co.)

> Smith Pond Rockville Center (Nassau Co.)

Carp, Goldfish

-3-

Splake over 12"

White perch

White perch Smallmouth bass

All species

Carp

Smallmouth bass

All species

Channel catfish

All species

Smallmouth bass Eat none.

American eel

Lake trout

American eel

All species

Eat no more than one meal per month.

Eat none.

Eat no more than one meal per month.

Eat none.

Eat no more than one meal per month.

Eat none.

Eat no more than one meal per month.

Eat no more than one meal per month.

Eat none.

Eat no more than one meal per month.

Eat none.

Eat no more than one meal per month.

5 5 1

F

Smith Pond Roosevelt Park (Nassau Co.) Carp, Goldfish

All species

All species

Eat no more than one meal per month.

Spring Pond (Suffolk Co.)

Valatie Kill

Stillwater Reservoir Splake

Eat no more than one meal per month.

1

Eat none.

Eat none.

- between Co. Rt. 18 and Nassau Lake

(Herkimer Co.)

Additional Advice

A brochure which provides further information on the health advisory is available from NYS DEC and NYS DOH Regional Offices or can be obtained by calling 1-800-458-1158.

The health implications of eating deformed or cancerous fish are unknown. Any grossly diseased fish should probably be discarded. Levels of PCB, mirex and possibly other contaminants of concern (except mercury) can be reduced by removing the skin and fatty portions along the back, sides and belly of smallmouth bass, brown trout, lake trout, coho salmon, striped bass, and bluefish. (This technique does not reduce mercury levels, however.) A guide to this method can be obtained from any DEC office.

*<u>Marine Waters</u> - The general advisory (eat no more than one meal per week) applies to bluefish and American eels but not to other fish species taken from marine waters. American eels from the Hudson, Harlem, and East Rivers and New York Harbor should not be eaten.

Marine Striped Bass - Eat no striped bass taken from the marine waters of Western Long Island, which includes that portion of the Island west of a line between Wading River and the terminus of Route 46 near Mastic Beach. Eat no more than one meal (1/2 pound) per month of striped bass taken from Eastern Long Island marine waters. Women of childbearing age, infants and children under 15 should not eat striped bass taken from Long Island marine waters. (Legal minimum length of marine striped bass is 33".)

*<u>Marine Crabs and Lobsters</u> - It is recommended that the hepatopancreas (liver, mustard, or tomalley) of crabs and lobsters not be eaten because this organ has high contaminant levels.

> <u>Snapping turtles</u> - Snapping turtles retain contaminants in their fat, liver, eggs and to a lesser extent in the muscle. If you choose to consume snapping turtles, carefully trimming away all fat and discarding the fat, liver, and eggs prior to cooking the meat or preparing soup or other dishes will reduce exposure. Women of childbearing age, and children under the age of 15 should avoid ingesting snapping turtles or any soup or stew made with snapping turtle meat.

Waterfowl - It is recommended that you eat no mergansers and common goldeneyes since they are the most heavily contaminated waterfowl species. Other waterfowl should be skinned and all fat removed before cooking; stuffing should be discarded after cooking; limit eating to two meals per month. Monitoring data indicate that wood ducks and Canada geese are less contaminated than other waterfowl species with dabbler ducks and then diving ducks having increasingly higher contaminant levels.

*Changes from the 1988-89 Health Advisory

1

HEALTH ADVISORIES FISHING AND HUNTING CHEMICAL CONTAMINANTS

SUMMARY

D R A F T 4/21/89

1. 360

The New York State Department of Health (DOH) issues an advisory on eating sportfish and wildlife taken in New York State because some of these foods contain potentially harmful levels of chemical contaminants. The health advisory is divided into three sections: (1) general advice on sportfish taken from waters in New York State; (2) advice on sportfish from specific water bodies; and (3) advice on wildlife. The advisory is developed and updated yearly and is directed to persons who may be likely to eat large quantities of sportfish or wildlife which might be contaminated.

BACKGROUND

Fishing and hunting provide many benefits including food and recreation. Many people enjoy cooking and eating their own catch. However, some fish and wildlife contain elevated levels of potentially harmful chemicals. These chemicals or contaminants enter the environment through such means as past industrial discharges, leaking landfills and the widespread use of pesticides. Fish and wildlife take in contaminants directly from the environment and from the food they eat. Some chemicals remain in them and then are ingested by people. DDT, PCBs, mirex, chlordane and mercury have been found in some species of fish taken in New York State at levels that exceed federal food standards. Long-term exposure to high levels of these chemicals has been linked to health effects such as cancer (in laboratory animals) or nervous system disorders (in humans).

The federal government establishes standards (tolerance levels or action levels) for chemical residues in or on raw agricultural products, including fish, in the United States. A tolerance level is the maximum amount of a residue expected when a pesticide is used according to the label directions, provided that the level is not an unacceptable health risk. The health risks are estimated assuming that people eat about one one-half pound fish meal each month. Action levels are established for chemicals that do not have approved agriculture uses but may unavoidably contaminate food due to their environmental persistence. Fish and wildlife cannot be legally sold if they contain a contaminant at a level greater than its tolerance or action level.

In New York State, the Department of Environmental Conservation (DEC) routinely monitors contaminant levels in fish and wildlife. The contaminant levels are measured in a skin-on fillet which has not been trimmed; the federal government uses this sample in determining whether or not the fish exceeds the tolerance level. When fish from a specific water body are found to contain high contaminant levels, DOH issues a sportfish consumption advisory for that species of fish. Under some circumstances, the state prohibits the sale or offering for sale of fish containing high contaminant levels. Advisories are also developed for contaminated wildlife. These actions are taken to minimize public exposure to contaminated food products.

GENERAL ADVISORY

8.-6.

1

The general health advisory for sportfish is that an individual eat no more than one meal (one-half pound) per week of fish from the state's freshwaters, the Hudson River estuary, or the New York City harbor area (the New York waters of the Hudson River to the Verrazano Narrows Bridge, the East River to the Throgs Neck Bridge, the Arthur Kill, Kill Van Kull, and Harlem River). This general advisory is designed to protect against consumption of large amounts of fish which may come from contaminated waterways that are as yet untested or which may contain unidentified contaminants. The general advisory does not apply to fish taken from marine waters. Ocean fish, although less tested, are generally less contaminated than freshwater fish, and fish that live further out from shore are likely to be even less contaminated than those that live or migrate close to the shore.

SPECIFIC FRESHWATER ADVISORIES

The second part of the health advisory contains information and recommendations for specific bodies of water. Fish monitoring has identified over thirty water bodies that have fish with a contaminant level that exceeds an action level or a tolerance level. Department of Health recommendations are based on the contaminant levels and suggest either limiting or avoiding eating a specific kind of fish from a particular body of water. In some cases, enough information is available to issue advisories based on the length of the fish. Older (larger) fish are often more contaminated than younger (smaller) fish.

The health advisory contains specific advice for infants, children under the age of fifteen and women of childbearing age. The Health Department recommends that they not eat fish from the specific water bodies listed in the advisory. The reason for this specific advice is that chemicals can have a potentially greater impact on developing organs in young children or in the fetus. Waters which have specific advisories have at least one species of fish with an elevated contaminant level, which means that a contamination source is in or near the water.

MARINE WATERS

The Department of Health has issued specific advisories for marine waters. These apply to striped bass, bluefish, and American eels and are the only marine fish advisories currently in effect. Striped bass, bluefish, and eels have specific habits or characteristics which make them more likely to have contaminants than other marine species.

An advisory has been issued for striped bass because of PCB contamination. Although saltwater fish are generally less contaminated than freshwater fish, fish like striped bass which spend time in Hudson River waters, can be contaminated at levels above food standards. The advisory for striped bass is divided into two geographical areas. For striped bass taken from the Hudson River, New York Harbor and western Long Island waters, the Health Department recommends against any consumption. For bass taken from eastern Long Island waters, the advisory is to eat no more than one meal per month. Women of childbearing age, infants and children under fifteen should not eat striped bass.

The Department has extended the general advisory to bluefish and American eels. They are contaminated with PCBs, although to a lesser extent than striped bass. The recommendation for bluefish and American eels caught in New York State's waters is to eat no more than one meal (one-half pound) per week, with an additional recommendation to not eat American eels from the Hudson, Harlem, and East Rivers and New York City harbor.

OTHER ADVISORIES

:8

The Department has also issued special advisories for crabs in the Hudson River, snapping turtles, and waterfowl which have been found to be contaminated with PCBs. Cooking methods that minimize the amount of contaminants which would be eaten are recommended. The complete advisory is provided at the end of this brochure.

The health implications of eating deformed or cancerous fish are unknown. Any obviously diseased fish (marked by tumors, lesions or other abnormal condition of the fish skin, meat or internal organs) should be discarded.

SHELLFISH

-31

Although all foods of animal origin, such as meat, poultry, seafoods and dairy products should be thoroughly cooked before consumption, the Health Department specifically recommends that the public not eat raw or partially cooked clams or oysters. This advice is not because of chemical contamination. Raw or partially cooked shellfish illegally harvested from waters contaminated with sewage have been linked to gastrointestinal illness and hepatitis A, caused by bacteria or yiruses.

SHOULD I BE CONCERNED ABOUT MEDICAL-TYPE WASTE AND GARBAGE AFFECTING FISH?

The recent wash-up of medical-type waste and garbage on New York and Long Island beaches has not affected the sanitary condition of marine fish, lobster and crabs. Furthermore, fish do not carry or transmit the AIDS virus. Consumers need not limit consumption of these foods because of these problems. Good sanitary practices should be followed when preparing fish from any waters. Fish should be kept iced or refrigerated until cleaned and filleted and then refrigerated until cooked. Hands, utensils, and work surfaces should be washed before and after handling any raw food, including fish. Seafood should be cooked to an internal temperature of 140° F.

WHAT CAN I DO TO REDUCE MY EXPOSURE TO CHEMICAL CONTAMINANTS FROM FISH?

Fish is an important source of protein and is low in saturated fat. Naturally occurring fish oils have been reported to lower plasma cholesterol and triglycerides, thereby decreasing the risk of coronary heart disease. Increasing fish consumption is useful in reducing dietary fat and controlling weight. By eating a diet which includes food from a variety of protein sources, an individual is more likely to have a diet which is adequate in all nutrients.

Although eating fish has some health benefits, fish with high contaminant levels should be avoided. When deciding whether or not to eat fish which may be contaminated, the benefits of eating those fish can be weighed against the risks. For young women, eating contaminated fish is a health concern not only for herself but also to any unborn or nursing child, since the chemicals may reach the fetus and can be passed on in breastmilk. For an older person with heart disease the risks, especially of long term health effects, may not be as great a concern when compared to the benefits of reducing the risks of heart disease.

Everyone can benefit from eating the fish they catch and can minimize their contaminant intake by following these general recommendations:

- Choose uncontaminated species from water bodies which are not listed in the Health Department's advisory.
- Use a method of filleting the fish which will reduce the skin, fatty material and dark meat. These parts of the fish contain many of the contaminants. A pamphlet on this method is available from the DEC.
- Choose smaller fish, consistent with DEC regulations, within a species since they may have lower contaminant levels. Older (larger) fish within a species may be more contaminated because they have had more time to accumulate contaminants in their bodies.
- 4. For shellfish, such as crab and lobster, do not eat the soft green substance found in the tail or body sections (tomalley, liver). This part of the shellfish has been found to contain high levels of chemical contaminants, including PCBs and heavy metals.
- 5. Based on limited studies, cooking methods such as broiling, poaching, boiling, and baking, which allow contaminants from the fatty portions of fish to drain out, are preferable. Pan frying is not recommended. The cooking liquids of fish from contaminated waters should be avoided since these liquids may retain contaminants.

second by country if all have a

ADDITIONAL INFORMATION

NEW YORK STATE DEPARTMENT OF HEALTH

For more information on health effects from exposure to chemical contaminants, contact:

Environmental Health Information 1-800-458-1158 (toll-free number)

Leave your name, number and brief message. Your call will be returned as soon as possible. Bureau of Toxic Substance Assessment 2 University Place Albany, NY 12203-3313 (518) 458-6376

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

For more information on fishing, contact:

Region 1 SUNY Campus, Bldg. 40 Stony Brook, NY 11794 (516) 751-7900

111

Region 2 47-40 21st St. Long Island City, NY 11101 (718) 482-4900

Region 3 21 South Putt Corners Rd. New Paltz, NY 12561 (914) 255-54538

Regional Offices

Region 4 2176 Guilderland Ave. Schenectady, NY 12306 (518) 382-0680

Region 5 Route 86 Ray Brook, NY 12977 (518) 891-1370

Region 6 State Office Bldg. Watertown, NY 13601 (315) 785-2236

ł,

Region 7 7481 Henry Clay Blvd. Liverpool, NY 13088 (315) 428-4497

Region 8 Routes 5 and 20 Avon, NY 14414 (716) 226-2466

Region 9 600 Delaware Ave. Bulfalo, NY 14202 (716) 847-4600

For information on contaminant levels, contact:

Bureau of Environmental Protection 50 Wolf Road Albany, NY 12233 (518) 457-6178

Prepared by: New York State Department of Health Division of Environmental Health Assessment April 1989